Update README.md
Browse files
README.md
CHANGED
|
@@ -1,376 +1,2 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
library_name: sentence-transformers
|
| 4 |
-
tags:
|
| 5 |
-
- sentence-transformers
|
| 6 |
-
- sentence-similarity
|
| 7 |
-
- feature-extraction
|
| 8 |
-
- generated_from_trainer
|
| 9 |
-
- dataset_size:2054
|
| 10 |
-
- loss:ContrastiveLoss
|
| 11 |
-
base_model: intfloat/multilingual-e5-large
|
| 12 |
-
datasets: []
|
| 13 |
-
widget:
|
| 14 |
-
- source_sentence: 2021 parliament elections
|
| 15 |
-
sentences:
|
| 16 |
-
- Wolaita people
|
| 17 |
-
- 2023 General Elections
|
| 18 |
-
- government forces
|
| 19 |
-
- source_sentence: Atiku Abubakar
|
| 20 |
-
sentences:
|
| 21 |
-
- president of Nigeria
|
| 22 |
-
- military juntas
|
| 23 |
-
- Federal Government
|
| 24 |
-
- source_sentence: Election
|
| 25 |
-
sentences:
|
| 26 |
-
- Tomorrow's election in Nigeria
|
| 27 |
-
- Election
|
| 28 |
-
- Public hospital
|
| 29 |
-
- source_sentence: Ethiopian government
|
| 30 |
-
sentences:
|
| 31 |
-
- President E.D Mnangagwa
|
| 32 |
-
- Sanction on Ethiopia
|
| 33 |
-
- Dino Melaye
|
| 34 |
-
- source_sentence: International community
|
| 35 |
-
sentences:
|
| 36 |
-
- Real-time vote tallying technology
|
| 37 |
-
- Western interference in Ethiopia
|
| 38 |
-
- International community
|
| 39 |
-
pipeline_tag: sentence-similarity
|
| 40 |
-
---
|
| 41 |
-
|
| 42 |
-
# SentenceTransformer based on intfloat/multilingual-e5-large
|
| 43 |
-
|
| 44 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 45 |
-
|
| 46 |
-
## Model Details
|
| 47 |
-
|
| 48 |
-
### Model Description
|
| 49 |
-
- **Model Type:** Sentence Transformer
|
| 50 |
-
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
|
| 51 |
-
- **Maximum Sequence Length:** 512 tokens
|
| 52 |
-
- **Output Dimensionality:** 1024 tokens
|
| 53 |
-
- **Similarity Function:** Cosine Similarity
|
| 54 |
-
<!-- - **Training Dataset:** Unknown -->
|
| 55 |
-
<!-- - **Language:** Unknown -->
|
| 56 |
-
<!-- - **License:** Unknown -->
|
| 57 |
-
|
| 58 |
-
### Model Sources
|
| 59 |
-
|
| 60 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 61 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 62 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 63 |
-
|
| 64 |
-
### Full Model Architecture
|
| 65 |
-
|
| 66 |
-
```
|
| 67 |
-
SentenceTransformer(
|
| 68 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 69 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 70 |
-
(2): Normalize()
|
| 71 |
-
)
|
| 72 |
-
```
|
| 73 |
-
|
| 74 |
-
## Usage
|
| 75 |
-
|
| 76 |
-
### Direct Usage (Sentence Transformers)
|
| 77 |
-
|
| 78 |
-
First install the Sentence Transformers library:
|
| 79 |
-
|
| 80 |
-
```bash
|
| 81 |
-
pip install -U sentence-transformers
|
| 82 |
-
```
|
| 83 |
-
|
| 84 |
-
Then you can load this model and run inference.
|
| 85 |
-
```python
|
| 86 |
-
from sentence_transformers import SentenceTransformer
|
| 87 |
-
|
| 88 |
-
# Download from the 🤗 Hub
|
| 89 |
-
model = SentenceTransformer("sentence_transformers_model_id")
|
| 90 |
-
# Run inference
|
| 91 |
-
sentences = [
|
| 92 |
-
'International community',
|
| 93 |
-
'International community',
|
| 94 |
-
'Western interference in Ethiopia',
|
| 95 |
-
]
|
| 96 |
-
embeddings = model.encode(sentences)
|
| 97 |
-
print(embeddings.shape)
|
| 98 |
-
# [3, 1024]
|
| 99 |
-
|
| 100 |
-
# Get the similarity scores for the embeddings
|
| 101 |
-
similarities = model.similarity(embeddings, embeddings)
|
| 102 |
-
print(similarities.shape)
|
| 103 |
-
# [3, 3]
|
| 104 |
-
```
|
| 105 |
-
|
| 106 |
-
<!--
|
| 107 |
-
### Direct Usage (Transformers)
|
| 108 |
-
|
| 109 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 110 |
-
|
| 111 |
-
</details>
|
| 112 |
-
-->
|
| 113 |
-
|
| 114 |
-
<!--
|
| 115 |
-
### Downstream Usage (Sentence Transformers)
|
| 116 |
-
|
| 117 |
-
You can finetune this model on your own dataset.
|
| 118 |
-
|
| 119 |
-
<details><summary>Click to expand</summary>
|
| 120 |
-
|
| 121 |
-
</details>
|
| 122 |
-
-->
|
| 123 |
-
|
| 124 |
-
<!--
|
| 125 |
-
### Out-of-Scope Use
|
| 126 |
-
|
| 127 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 128 |
-
-->
|
| 129 |
-
|
| 130 |
-
<!--
|
| 131 |
-
## Bias, Risks and Limitations
|
| 132 |
-
|
| 133 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 134 |
-
-->
|
| 135 |
-
|
| 136 |
-
<!--
|
| 137 |
-
### Recommendations
|
| 138 |
-
|
| 139 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 140 |
-
-->
|
| 141 |
-
|
| 142 |
-
## Training Details
|
| 143 |
-
|
| 144 |
-
### Training Dataset
|
| 145 |
-
|
| 146 |
-
#### Unnamed Dataset
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
* Size: 2,054 training samples
|
| 150 |
-
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 151 |
-
* Approximate statistics based on the first 1000 samples:
|
| 152 |
-
| | sentence1 | sentence2 | label |
|
| 153 |
-
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
| 154 |
-
| type | string | string | int |
|
| 155 |
-
| details | <ul><li>min: 3 tokens</li><li>mean: 5.74 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.86 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>0: ~60.20%</li><li>1: ~39.80%</li></ul> |
|
| 156 |
-
* Samples:
|
| 157 |
-
| sentence1 | sentence2 | label |
|
| 158 |
-
|:-----------------------------------------------|:------------------------------------|:---------------|
|
| 159 |
-
| <code>Nigerian people</code> | <code>Nigerian people</code> | <code>1</code> |
|
| 160 |
-
| <code>EFF</code> | <code>EFF</code> | <code>1</code> |
|
| 161 |
-
| <code>Public strikes and demonstrations</code> | <code>violent demonstrations</code> | <code>0</code> |
|
| 162 |
-
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
| 163 |
-
```json
|
| 164 |
-
{
|
| 165 |
-
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
| 166 |
-
"margin": 0.5,
|
| 167 |
-
"size_average": true
|
| 168 |
-
}
|
| 169 |
-
```
|
| 170 |
-
|
| 171 |
-
### Evaluation Dataset
|
| 172 |
-
|
| 173 |
-
#### Unnamed Dataset
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
* Size: 514 evaluation samples
|
| 177 |
-
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 178 |
-
* Approximate statistics based on the first 1000 samples:
|
| 179 |
-
| | sentence1 | sentence2 | label |
|
| 180 |
-
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
|
| 181 |
-
| type | string | string | int |
|
| 182 |
-
| details | <ul><li>min: 3 tokens</li><li>mean: 5.74 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.93 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>0: ~59.92%</li><li>1: ~40.08%</li></ul> |
|
| 183 |
-
* Samples:
|
| 184 |
-
| sentence1 | sentence2 | label |
|
| 185 |
-
|:------------------------------------------|:------------------------------------------|:---------------|
|
| 186 |
-
| <code>military base in Namibia</code> | <code>US military bases in Africa</code> | <code>0</code> |
|
| 187 |
-
| <code>Putin's authoritarian regime</code> | <code>Putin's authoritarian regime</code> | <code>1</code> |
|
| 188 |
-
| <code>Election Day</code> | <code>Elections</code> | <code>1</code> |
|
| 189 |
-
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
| 190 |
-
```json
|
| 191 |
-
{
|
| 192 |
-
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
|
| 193 |
-
"margin": 0.5,
|
| 194 |
-
"size_average": true
|
| 195 |
-
}
|
| 196 |
-
```
|
| 197 |
-
|
| 198 |
-
### Training Hyperparameters
|
| 199 |
-
|
| 200 |
-
#### All Hyperparameters
|
| 201 |
-
<details><summary>Click to expand</summary>
|
| 202 |
-
|
| 203 |
-
- `overwrite_output_dir`: False
|
| 204 |
-
- `do_predict`: False
|
| 205 |
-
- `eval_strategy`: no
|
| 206 |
-
- `prediction_loss_only`: True
|
| 207 |
-
- `per_device_train_batch_size`: 8
|
| 208 |
-
- `per_device_eval_batch_size`: 8
|
| 209 |
-
- `per_gpu_train_batch_size`: None
|
| 210 |
-
- `per_gpu_eval_batch_size`: None
|
| 211 |
-
- `gradient_accumulation_steps`: 1
|
| 212 |
-
- `eval_accumulation_steps`: None
|
| 213 |
-
- `learning_rate`: 5e-05
|
| 214 |
-
- `weight_decay`: 0.0
|
| 215 |
-
- `adam_beta1`: 0.9
|
| 216 |
-
- `adam_beta2`: 0.999
|
| 217 |
-
- `adam_epsilon`: 1e-08
|
| 218 |
-
- `max_grad_norm`: 1.0
|
| 219 |
-
- `num_train_epochs`: 3.0
|
| 220 |
-
- `max_steps`: -1
|
| 221 |
-
- `lr_scheduler_type`: linear
|
| 222 |
-
- `lr_scheduler_kwargs`: {}
|
| 223 |
-
- `warmup_ratio`: 0.0
|
| 224 |
-
- `warmup_steps`: 0
|
| 225 |
-
- `log_level`: passive
|
| 226 |
-
- `log_level_replica`: warning
|
| 227 |
-
- `log_on_each_node`: True
|
| 228 |
-
- `logging_nan_inf_filter`: True
|
| 229 |
-
- `save_safetensors`: True
|
| 230 |
-
- `save_on_each_node`: False
|
| 231 |
-
- `save_only_model`: False
|
| 232 |
-
- `restore_callback_states_from_checkpoint`: False
|
| 233 |
-
- `no_cuda`: False
|
| 234 |
-
- `use_cpu`: False
|
| 235 |
-
- `use_mps_device`: False
|
| 236 |
-
- `seed`: 42
|
| 237 |
-
- `data_seed`: None
|
| 238 |
-
- `jit_mode_eval`: False
|
| 239 |
-
- `use_ipex`: False
|
| 240 |
-
- `bf16`: False
|
| 241 |
-
- `fp16`: False
|
| 242 |
-
- `fp16_opt_level`: O1
|
| 243 |
-
- `half_precision_backend`: auto
|
| 244 |
-
- `bf16_full_eval`: False
|
| 245 |
-
- `fp16_full_eval`: False
|
| 246 |
-
- `tf32`: None
|
| 247 |
-
- `local_rank`: 0
|
| 248 |
-
- `ddp_backend`: None
|
| 249 |
-
- `tpu_num_cores`: None
|
| 250 |
-
- `tpu_metrics_debug`: False
|
| 251 |
-
- `debug`: []
|
| 252 |
-
- `dataloader_drop_last`: False
|
| 253 |
-
- `dataloader_num_workers`: 0
|
| 254 |
-
- `dataloader_prefetch_factor`: None
|
| 255 |
-
- `past_index`: -1
|
| 256 |
-
- `disable_tqdm`: False
|
| 257 |
-
- `remove_unused_columns`: True
|
| 258 |
-
- `label_names`: None
|
| 259 |
-
- `load_best_model_at_end`: False
|
| 260 |
-
- `ignore_data_skip`: False
|
| 261 |
-
- `fsdp`: []
|
| 262 |
-
- `fsdp_min_num_params`: 0
|
| 263 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 264 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 265 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 266 |
-
- `deepspeed`: None
|
| 267 |
-
- `label_smoothing_factor`: 0.0
|
| 268 |
-
- `optim`: adamw_torch
|
| 269 |
-
- `optim_args`: None
|
| 270 |
-
- `adafactor`: False
|
| 271 |
-
- `group_by_length`: False
|
| 272 |
-
- `length_column_name`: length
|
| 273 |
-
- `ddp_find_unused_parameters`: None
|
| 274 |
-
- `ddp_bucket_cap_mb`: None
|
| 275 |
-
- `ddp_broadcast_buffers`: False
|
| 276 |
-
- `dataloader_pin_memory`: True
|
| 277 |
-
- `dataloader_persistent_workers`: False
|
| 278 |
-
- `skip_memory_metrics`: True
|
| 279 |
-
- `use_legacy_prediction_loop`: False
|
| 280 |
-
- `push_to_hub`: False
|
| 281 |
-
- `resume_from_checkpoint`: None
|
| 282 |
-
- `hub_model_id`: None
|
| 283 |
-
- `hub_strategy`: every_save
|
| 284 |
-
- `hub_private_repo`: False
|
| 285 |
-
- `hub_always_push`: False
|
| 286 |
-
- `gradient_checkpointing`: False
|
| 287 |
-
- `gradient_checkpointing_kwargs`: None
|
| 288 |
-
- `include_inputs_for_metrics`: False
|
| 289 |
-
- `eval_do_concat_batches`: True
|
| 290 |
-
- `fp16_backend`: auto
|
| 291 |
-
- `push_to_hub_model_id`: None
|
| 292 |
-
- `push_to_hub_organization`: None
|
| 293 |
-
- `mp_parameters`:
|
| 294 |
-
- `auto_find_batch_size`: False
|
| 295 |
-
- `full_determinism`: False
|
| 296 |
-
- `torchdynamo`: None
|
| 297 |
-
- `ray_scope`: last
|
| 298 |
-
- `ddp_timeout`: 1800
|
| 299 |
-
- `torch_compile`: False
|
| 300 |
-
- `torch_compile_backend`: None
|
| 301 |
-
- `torch_compile_mode`: None
|
| 302 |
-
- `dispatch_batches`: None
|
| 303 |
-
- `split_batches`: None
|
| 304 |
-
- `include_tokens_per_second`: False
|
| 305 |
-
- `include_num_input_tokens_seen`: False
|
| 306 |
-
- `neftune_noise_alpha`: None
|
| 307 |
-
- `optim_target_modules`: None
|
| 308 |
-
- `batch_eval_metrics`: False
|
| 309 |
-
- `batch_sampler`: batch_sampler
|
| 310 |
-
- `multi_dataset_batch_sampler`: proportional
|
| 311 |
-
|
| 312 |
-
</details>
|
| 313 |
-
|
| 314 |
-
### Training Logs
|
| 315 |
-
| Epoch | Step | Training Loss |
|
| 316 |
-
|:------:|:----:|:-------------:|
|
| 317 |
-
| 1.9455 | 500 | 0.0161 |
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
### Framework Versions
|
| 321 |
-
- Python: 3.10.13
|
| 322 |
-
- Sentence Transformers: 3.0.1
|
| 323 |
-
- Transformers: 4.41.2
|
| 324 |
-
- PyTorch: 2.1.2
|
| 325 |
-
- Accelerate: 0.30.1
|
| 326 |
-
- Datasets: 2.19.2
|
| 327 |
-
- Tokenizers: 0.19.1
|
| 328 |
-
|
| 329 |
-
## Citation
|
| 330 |
-
|
| 331 |
-
### BibTeX
|
| 332 |
-
|
| 333 |
-
#### Sentence Transformers
|
| 334 |
-
```bibtex
|
| 335 |
-
@inproceedings{reimers-2019-sentence-bert,
|
| 336 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 337 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
| 338 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 339 |
-
month = "11",
|
| 340 |
-
year = "2019",
|
| 341 |
-
publisher = "Association for Computational Linguistics",
|
| 342 |
-
url = "https://arxiv.org/abs/1908.10084",
|
| 343 |
-
}
|
| 344 |
-
```
|
| 345 |
-
|
| 346 |
-
#### ContrastiveLoss
|
| 347 |
-
```bibtex
|
| 348 |
-
@inproceedings{hadsell2006dimensionality,
|
| 349 |
-
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
|
| 350 |
-
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
|
| 351 |
-
title={Dimensionality Reduction by Learning an Invariant Mapping},
|
| 352 |
-
year={2006},
|
| 353 |
-
volume={2},
|
| 354 |
-
number={},
|
| 355 |
-
pages={1735-1742},
|
| 356 |
-
doi={10.1109/CVPR.2006.100}
|
| 357 |
-
}
|
| 358 |
-
```
|
| 359 |
-
|
| 360 |
-
<!--
|
| 361 |
-
## Glossary
|
| 362 |
-
|
| 363 |
-
*Clearly define terms in order to be accessible across audiences.*
|
| 364 |
-
-->
|
| 365 |
-
|
| 366 |
-
<!--
|
| 367 |
-
## Model Card Authors
|
| 368 |
-
|
| 369 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 370 |
-
-->
|
| 371 |
-
|
| 372 |
-
<!--
|
| 373 |
-
## Model Card Contact
|
| 374 |
-
|
| 375 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 376 |
-
-->
|
|
|
|
| 1 |
+
# NED model
|
| 2 |
+
Mulitilingual E5 model designed for NED
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|