HasinMDG commited on
Commit
5259505
·
verified ·
1 Parent(s): f789988

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ metrics:
4
+ - negative_mse
5
+ pipeline_tag: sentence-similarity
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:25095
12
+ - loss:MSELoss
13
+ widget:
14
+ - source_sentence: mariknak pay ketdi a naabrasaak iti kulonganda
15
+ sentences:
16
+ - Nakuha nako ang usa ka kuptanan sa istorya ug nagsugod kini sa pagbati ug porma
17
+ nga akong gusto
18
+ - 'Ang kasarangang pag-ulan sa London, nga adunay kataas nga 10°C ug ang ubos nga
19
+ 6°C. #LondonWeather #RainyDay'
20
+ - Controversial religious text causes uproar among community members
21
+ - source_sentence: "JUAN COLE: Ang Pagduso sa Islamic State sa Baghdad 'Usa ka\
22
+ \ Pagsulay Aron Mabawi ang Gikuha sa Bush Administration' \n"
23
+ sentences:
24
+ - Ang Touchdown nga Selebrasyon ni Antonio Brown Sexy Gihapon Alang sa NFL Bisan
25
+ ang duha ka pagduso makapasilo kanimo.
26
+ - Natuklasan ng mga siyentipiko ang mga bagong species ng nilalang sa malalim na
27
+ dagat
28
+ - i feel so glad doing this
29
+ - source_sentence: New Curriculum Standards to Be Implemented in All Schools Next
30
+ Year
31
+ sentences:
32
+ - "Climate Change This Week: Mega Methane, Tidal Power, and More \n"
33
+ - '@lilomatic Only in Zimbabwe where u find Opposition party for another Opposition
34
+ party.'
35
+ - "Ang mamumuno nga si Mike namulong sa Ferguson: 'Ang Hustisya Dili Kanunay\
36
+ \ Gisilbi' \n"
37
+ - source_sentence: i am so blessed and feel blessed to be able to share my creations
38
+ with you
39
+ sentences:
40
+ - "Ania ang Buhaton Sa World Cup Host Cities Gawas sa Pagtan-aw sa Soccer \n"
41
+ - "Hillary Clinton's 'Super Volunteers' Are Back And Ready For 2016 \n"
42
+ - Awan pay ti koriente para kadagiti paset ti Joburg kalpasan ti uram ti kable iti
43
+ uneg ti daga https://t.co/szuZa380Lr
44
+ - source_sentence: "3 Napateg nga Addang (iti Aniaman nga Edad) tapno Agsagana iti\
45
+ \ Matay \n"
46
+ sentences:
47
+ - EPIC! RAND PAUL Laughs at CNN’s Climate Hysteria…Schools Jake Tapper on Climate
48
+ Truth [Video]
49
+ - im feeling horrible
50
+ - 'Image: WC Provincial Disaster Management Centre https://t.co/EcNgpBhjcV'
51
+ model-index:
52
+ - name: SentenceTransformer
53
+ results:
54
+ - task:
55
+ type: knowledge-distillation
56
+ name: Knowledge Distillation
57
+ dataset:
58
+ name: Unknown
59
+ type: unknown
60
+ metrics:
61
+ - type: negative_mse
62
+ value: -0.2521140966564417
63
+ name: Negative Mse
64
+ ---
65
+
66
+ # SentenceTransformer
67
+
68
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
69
+
70
+ ## Model Details
71
+
72
+ ### Model Description
73
+ - **Model Type:** Sentence Transformer
74
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
75
+ - **Maximum Sequence Length:** 128 tokens
76
+ - **Output Dimensionality:** 768 tokens
77
+ - **Similarity Function:** Cosine Similarity
78
+ <!-- - **Training Dataset:** Unknown -->
79
+ <!-- - **Language:** Unknown -->
80
+ <!-- - **License:** Unknown -->
81
+
82
+ ### Model Sources
83
+
84
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
85
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
86
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
87
+
88
+ ### Full Model Architecture
89
+
90
+ ```
91
+ SentenceTransformer(
92
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
93
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
94
+ )
95
+ ```
96
+
97
+ ## Usage
98
+
99
+ ### Direct Usage (Sentence Transformers)
100
+
101
+ First install the Sentence Transformers library:
102
+
103
+ ```bash
104
+ pip install -U sentence-transformers
105
+ ```
106
+
107
+ Then you can load this model and run inference.
108
+ ```python
109
+ from sentence_transformers import SentenceTransformer
110
+
111
+ # Download from the 🤗 Hub
112
+ model = SentenceTransformer("sentence_transformers_model_id")
113
+ # Run inference
114
+ sentences = [
115
+ '3 Napateg nga Addang (iti Aniaman nga Edad) tapno Agsagana iti Matay \n',
116
+ 'EPIC! RAND PAUL Laughs at CNN’s Climate Hysteria…Schools Jake Tapper on Climate Truth [Video]',
117
+ 'Image: WC Provincial Disaster Management Centre https://t.co/EcNgpBhjcV',
118
+ ]
119
+ embeddings = model.encode(sentences)
120
+ print(embeddings.shape)
121
+ # [3, 768]
122
+
123
+ # Get the similarity scores for the embeddings
124
+ similarities = model.similarity(embeddings, embeddings)
125
+ print(similarities.shape)
126
+ # [3, 3]
127
+ ```
128
+
129
+ <!--
130
+ ### Direct Usage (Transformers)
131
+
132
+ <details><summary>Click to see the direct usage in Transformers</summary>
133
+
134
+ </details>
135
+ -->
136
+
137
+ <!--
138
+ ### Downstream Usage (Sentence Transformers)
139
+
140
+ You can finetune this model on your own dataset.
141
+
142
+ <details><summary>Click to expand</summary>
143
+
144
+ </details>
145
+ -->
146
+
147
+ <!--
148
+ ### Out-of-Scope Use
149
+
150
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
151
+ -->
152
+
153
+ ## Evaluation
154
+
155
+ ### Metrics
156
+
157
+ #### Knowledge Distillation
158
+
159
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
160
+
161
+ | Metric | Value |
162
+ |:-----------------|:------------|
163
+ | **negative_mse** | **-0.2521** |
164
+
165
+ <!--
166
+ ## Bias, Risks and Limitations
167
+
168
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
169
+ -->
170
+
171
+ <!--
172
+ ### Recommendations
173
+
174
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
175
+ -->
176
+
177
+ ## Training Details
178
+
179
+ ### Training Dataset
180
+
181
+ #### Unnamed Dataset
182
+
183
+
184
+ * Size: 25,095 training samples
185
+ * Columns: <code>sentence_0</code> and <code>label</code>
186
+ * Approximate statistics based on the first 1000 samples:
187
+ | | sentence_0 | label |
188
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
189
+ | type | string | list |
190
+ | details | <ul><li>min: 4 tokens</li><li>mean: 23.49 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
191
+ * Samples:
192
+ | sentence_0 | label |
193
+ |:------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
194
+ | <code>A suicide bomber targeting a crowded market resulting in numerous fatalities</code> | <code>[-0.05337272211909294, -0.296869158744812, -0.005234384443610907, -0.017071111127734184, 0.01954558491706848, ...]</code> |
195
+ | <code>Jeb Bush To Meet With Charleston Pastors <br></code> | <code>[-0.025684779509902, 0.2293000966310501, -0.005389949772506952, 0.09448838979005814, 0.017471183091402054, ...]</code> |
196
+ | <code>New scientific research suggests link between air pollution and lung disease</code> | <code>[-0.12967786192893982, 0.19541345536708832, -0.0044404976069927216, -0.06291326135396957, -0.03776596114039421, ...]</code> |
197
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
198
+
199
+ ### Training Hyperparameters
200
+ #### Non-Default Hyperparameters
201
+
202
+ - `eval_strategy`: steps
203
+ - `per_device_train_batch_size`: 64
204
+ - `per_device_eval_batch_size`: 64
205
+ - `num_train_epochs`: 20
206
+ - `multi_dataset_batch_sampler`: round_robin
207
+
208
+ #### All Hyperparameters
209
+ <details><summary>Click to expand</summary>
210
+
211
+ - `overwrite_output_dir`: False
212
+ - `do_predict`: False
213
+ - `eval_strategy`: steps
214
+ - `prediction_loss_only`: True
215
+ - `per_device_train_batch_size`: 64
216
+ - `per_device_eval_batch_size`: 64
217
+ - `per_gpu_train_batch_size`: None
218
+ - `per_gpu_eval_batch_size`: None
219
+ - `gradient_accumulation_steps`: 1
220
+ - `eval_accumulation_steps`: None
221
+ - `torch_empty_cache_steps`: None
222
+ - `learning_rate`: 5e-05
223
+ - `weight_decay`: 0.0
224
+ - `adam_beta1`: 0.9
225
+ - `adam_beta2`: 0.999
226
+ - `adam_epsilon`: 1e-08
227
+ - `max_grad_norm`: 1
228
+ - `num_train_epochs`: 20
229
+ - `max_steps`: -1
230
+ - `lr_scheduler_type`: linear
231
+ - `lr_scheduler_kwargs`: {}
232
+ - `warmup_ratio`: 0.0
233
+ - `warmup_steps`: 0
234
+ - `log_level`: passive
235
+ - `log_level_replica`: warning
236
+ - `log_on_each_node`: True
237
+ - `logging_nan_inf_filter`: True
238
+ - `save_safetensors`: True
239
+ - `save_on_each_node`: False
240
+ - `save_only_model`: False
241
+ - `restore_callback_states_from_checkpoint`: False
242
+ - `no_cuda`: False
243
+ - `use_cpu`: False
244
+ - `use_mps_device`: False
245
+ - `seed`: 42
246
+ - `data_seed`: None
247
+ - `jit_mode_eval`: False
248
+ - `use_ipex`: False
249
+ - `bf16`: False
250
+ - `fp16`: False
251
+ - `fp16_opt_level`: O1
252
+ - `half_precision_backend`: auto
253
+ - `bf16_full_eval`: False
254
+ - `fp16_full_eval`: False
255
+ - `tf32`: None
256
+ - `local_rank`: 0
257
+ - `ddp_backend`: None
258
+ - `tpu_num_cores`: None
259
+ - `tpu_metrics_debug`: False
260
+ - `debug`: []
261
+ - `dataloader_drop_last`: False
262
+ - `dataloader_num_workers`: 0
263
+ - `dataloader_prefetch_factor`: None
264
+ - `past_index`: -1
265
+ - `disable_tqdm`: False
266
+ - `remove_unused_columns`: True
267
+ - `label_names`: None
268
+ - `load_best_model_at_end`: False
269
+ - `ignore_data_skip`: False
270
+ - `fsdp`: []
271
+ - `fsdp_min_num_params`: 0
272
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
273
+ - `fsdp_transformer_layer_cls_to_wrap`: None
274
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
275
+ - `deepspeed`: None
276
+ - `label_smoothing_factor`: 0.0
277
+ - `optim`: adamw_torch
278
+ - `optim_args`: None
279
+ - `adafactor`: False
280
+ - `group_by_length`: False
281
+ - `length_column_name`: length
282
+ - `ddp_find_unused_parameters`: None
283
+ - `ddp_bucket_cap_mb`: None
284
+ - `ddp_broadcast_buffers`: False
285
+ - `dataloader_pin_memory`: True
286
+ - `dataloader_persistent_workers`: False
287
+ - `skip_memory_metrics`: True
288
+ - `use_legacy_prediction_loop`: False
289
+ - `push_to_hub`: False
290
+ - `resume_from_checkpoint`: None
291
+ - `hub_model_id`: None
292
+ - `hub_strategy`: every_save
293
+ - `hub_private_repo`: False
294
+ - `hub_always_push`: False
295
+ - `gradient_checkpointing`: False
296
+ - `gradient_checkpointing_kwargs`: None
297
+ - `include_inputs_for_metrics`: False
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `dispatch_batches`: None
312
+ - `split_batches`: None
313
+ - `include_tokens_per_second`: False
314
+ - `include_num_input_tokens_seen`: False
315
+ - `neftune_noise_alpha`: None
316
+ - `optim_target_modules`: None
317
+ - `batch_eval_metrics`: False
318
+ - `eval_on_start`: False
319
+ - `eval_use_gather_object`: False
320
+ - `batch_sampler`: batch_sampler
321
+ - `multi_dataset_batch_sampler`: round_robin
322
+
323
+ </details>
324
+
325
+ ### Training Logs
326
+ | Epoch | Step | Training Loss | negative_mse |
327
+ |:-------:|:----:|:-------------:|:------------:|
328
+ | 0.5089 | 200 | - | -0.3720 |
329
+ | 1.0 | 393 | - | -0.3428 |
330
+ | 1.0178 | 400 | - | -0.3437 |
331
+ | 1.2723 | 500 | 0.0024 | - |
332
+ | 1.5267 | 600 | - | -0.3262 |
333
+ | 2.0 | 786 | - | -0.3153 |
334
+ | 2.0356 | 800 | - | -0.3156 |
335
+ | 2.5445 | 1000 | 0.0018 | -0.3070 |
336
+ | 3.0 | 1179 | - | -0.3004 |
337
+ | 3.0534 | 1200 | - | -0.3005 |
338
+ | 3.5623 | 1400 | - | -0.2959 |
339
+ | 3.8168 | 1500 | 0.0015 | - |
340
+ | 4.0 | 1572 | - | -0.2907 |
341
+ | 4.0712 | 1600 | - | -0.2924 |
342
+ | 4.5802 | 1800 | - | -0.2863 |
343
+ | 5.0 | 1965 | - | -0.2831 |
344
+ | 5.0891 | 2000 | 0.0013 | -0.2841 |
345
+ | 5.5980 | 2200 | - | -0.2792 |
346
+ | 6.0 | 2358 | - | -0.2765 |
347
+ | 6.1069 | 2400 | - | -0.2774 |
348
+ | 6.3613 | 2500 | 0.0012 | - |
349
+ | 6.6158 | 2600 | - | -0.2734 |
350
+ | 7.0 | 2751 | - | -0.2716 |
351
+ | 7.1247 | 2800 | - | -0.2722 |
352
+ | 7.6336 | 3000 | 0.0011 | -0.2700 |
353
+ | 8.0 | 3144 | - | -0.2684 |
354
+ | 8.1425 | 3200 | - | -0.2683 |
355
+ | 8.6514 | 3400 | - | -0.2665 |
356
+ | 8.9059 | 3500 | 0.001 | - |
357
+ | 9.0 | 3537 | - | -0.2645 |
358
+ | 9.1603 | 3600 | - | -0.2649 |
359
+ | 9.6692 | 3800 | - | -0.2639 |
360
+ | 10.0 | 3930 | - | -0.2625 |
361
+ | 10.1781 | 4000 | 0.0009 | -0.2619 |
362
+ | 10.6870 | 4200 | - | -0.2615 |
363
+ | 11.0 | 4323 | - | -0.2594 |
364
+ | 11.1959 | 4400 | - | -0.2598 |
365
+ | 11.4504 | 4500 | 0.0009 | - |
366
+ | 11.7048 | 4600 | - | -0.2587 |
367
+ | 12.0 | 4716 | - | -0.2582 |
368
+ | 12.2137 | 4800 | - | -0.2586 |
369
+ | 12.7226 | 5000 | 0.0008 | -0.2573 |
370
+ | 13.0 | 5109 | - | -0.2568 |
371
+ | 13.2316 | 5200 | - | -0.2567 |
372
+ | 13.7405 | 5400 | - | -0.2564 |
373
+ | 13.9949 | 5500 | 0.0008 | - |
374
+ | 14.0 | 5502 | - | -0.2558 |
375
+ | 14.2494 | 5600 | - | -0.2560 |
376
+ | 14.7583 | 5800 | - | -0.2551 |
377
+ | 15.0 | 5895 | - | -0.2548 |
378
+ | 15.2672 | 6000 | 0.0008 | -0.2552 |
379
+ | 15.7761 | 6200 | - | -0.2540 |
380
+ | 16.0 | 6288 | - | -0.2534 |
381
+ | 16.2850 | 6400 | - | -0.2538 |
382
+ | 16.5394 | 6500 | 0.0008 | - |
383
+ | 16.7939 | 6600 | - | -0.2529 |
384
+ | 17.0 | 6681 | - | -0.2532 |
385
+ | 17.3028 | 6800 | - | -0.2530 |
386
+ | 17.8117 | 7000 | 0.0008 | -0.2528 |
387
+ | 18.0 | 7074 | - | -0.2525 |
388
+ | 18.3206 | 7200 | - | -0.2527 |
389
+ | 18.8295 | 7400 | - | -0.2521 |
390
+
391
+
392
+ ### Framework Versions
393
+ - Python: 3.10.14
394
+ - Sentence Transformers: 3.1.1
395
+ - Transformers: 4.44.2
396
+ - PyTorch: 2.4.0
397
+ - Accelerate: 0.34.2
398
+ - Datasets: 3.0.0
399
+ - Tokenizers: 0.19.1
400
+
401
+ ## Citation
402
+
403
+ ### BibTeX
404
+
405
+ #### Sentence Transformers
406
+ ```bibtex
407
+ @inproceedings{reimers-2019-sentence-bert,
408
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
409
+ author = "Reimers, Nils and Gurevych, Iryna",
410
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
411
+ month = "11",
412
+ year = "2019",
413
+ publisher = "Association for Computational Linguistics",
414
+ url = "https://arxiv.org/abs/1908.10084",
415
+ }
416
+ ```
417
+
418
+ #### MSELoss
419
+ ```bibtex
420
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
421
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
422
+ author = "Reimers, Nils and Gurevych, Iryna",
423
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
424
+ month = "11",
425
+ year = "2020",
426
+ publisher = "Association for Computational Linguistics",
427
+ url = "https://arxiv.org/abs/2004.09813",
428
+ }
429
+ ```
430
+
431
+ <!--
432
+ ## Glossary
433
+
434
+ *Clearly define terms in order to be accessible across audiences.*
435
+ -->
436
+
437
+ <!--
438
+ ## Model Card Authors
439
+
440
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
441
+ -->
442
+
443
+ <!--
444
+ ## Model Card Contact
445
+
446
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
447
+ -->
Score_Metric.csv ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ task,Language,acc,bacc,mcc,f1,baseline_acc,baseline_bacc,baseline_mcc,baseline_f1
2
+ theme,Cebuano,0.52,0.69,0.5,0.52,0.48,0.37,0.4,0.4
3
+ theme,Filipino (Tagalog),0.52,0.69,0.5,0.52,0.48,0.37,0.4,0.4
4
+ theme,Ilocano,0.52,0.69,0.5,0.52,0.48,0.37,0.4,0.4
5
+ sentiment,Cebuano,0.61,0.65,0.43,0.61,0.55,0.46,0.28,0.44
6
+ sentiment,Filipino (Tagalog),0.61,0.65,0.43,0.61,0.55,0.46,0.28,0.44
7
+ sentiment,Ilocano,0.61,0.65,0.43,0.61,0.55,0.46,0.28,0.44
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/kaggle/input/mpnet-extended-fil-ceb-iloc/output/mpnet-multilingual-eng-or-ti-ha-am",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c05067fed3d84b77872a0119855be1c38c7b4faad9940bed9513043781944c6
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }