--- license: mit language: - en base_model: - huawei-noah/TinyBERT_General_4L_312D pipeline_tag: text-classification tags: - sentiment-analysis - tinybert - transformers - text-classification - imdb --- # # 📦 TinyBERT IMDB Sentiment Analysis Model This is a fine-tuned [TinyBERT](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) model for binary **sentiment classification** on a 5,000-sample subset of the [IMDB dataset](https://huggingface.co/datasets/imdb). It predicts whether a movie review is **positive** or **negative**. ## 🧠 Model Details - **Base model:** [`huawei-noah/TinyBERT_General_4L_312D`](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) - **Task:** Sentiment Classification (Binary) - **Dataset:** 4,000 training + 1,000 test samples from IMDB - **Tokenizer:** `AutoTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')` - **Max length:** 300 tokens - **Batch size:** 64 - **Training framework:** Hugging Face `Trainer` - **Device:** A100 GPU ## 📊 Evaluation Metrics ## 📊 Evaluation Metrics (on 1,000-sample test set) | Metric | Value | |-----------------------|----------| | Accuracy | **88.02%** | | Evaluation Loss | 0.2962 | | Runtime | 30.9 sec | | Samples per Second | 485 | ## 🚀 How to Use ```python from transformers import pipeline classifier = pipeline( "text-classification", model="Harsha901/tinybert-imdb-sentiment-analysis-model" ) result = classifier("This movie was absolutely amazing!") print(result) # [{'label': 'LABEL_1', 'score': 0.98}]