--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: albert-large-v2_ner_conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9396018069265518 - name: Recall type: recall value: 0.9451363177381353 - name: F1 type: f1 value: 0.9423609363201612 - name: Accuracy type: accuracy value: 0.9874810170943499 --- # albert-large-v2_ner_conll2003 This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0584 - Precision: 0.9396 - Recall: 0.9451 - F1: 0.9424 - Accuracy: 0.9875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2034 | 1.0 | 878 | 0.0653 | 0.9114 | 0.9278 | 0.9195 | 0.9837 | | 0.0561 | 2.0 | 1756 | 0.0602 | 0.9316 | 0.9280 | 0.9298 | 0.9845 | | 0.0303 | 3.0 | 2634 | 0.0536 | 0.9380 | 0.9424 | 0.9402 | 0.9872 | | 0.0177 | 4.0 | 3512 | 0.0535 | 0.9393 | 0.9456 | 0.9425 | 0.9877 | | 0.011 | 5.0 | 4390 | 0.0584 | 0.9396 | 0.9451 | 0.9424 | 0.9875 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1