AlexanderMaz commited on
Commit
fa14510
·
verified ·
1 Parent(s): c920bee

Upload acta anonymizer adapter - Latest (v20250914_065801)

Browse files
.gitattributes CHANGED
@@ -47,3 +47,5 @@ checkpoint-13074/tokenizer.json filter=lfs diff=lfs merge=lfs -text
47
  versions/20250914_065801/checkpoint-8000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
48
  versions/20250914_065801/checkpoint-8716/tokenizer.json filter=lfs diff=lfs merge=lfs -text
49
  versions/20250914_065801/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
47
  versions/20250914_065801/checkpoint-8000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
48
  versions/20250914_065801/checkpoint-8716/tokenizer.json filter=lfs diff=lfs merge=lfs -text
49
  versions/20250914_065801/tokenizer.json filter=lfs diff=lfs merge=lfs -text
50
+ checkpoint-8000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
51
+ checkpoint-8716/tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,91 +1,206 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - ro
5
  base_model: EvanD/xlm-roberta-base-romanian-ner-ronec
 
6
  tags:
7
- - token-classification
8
- - named-entity-recognition
9
- - pii-detection
10
- - romanian
11
- - moldova
12
- - financial-pii
13
- - banking
14
- - fintech
15
  ---
16
 
17
- # Finguys/acta-anonymizer-financial
18
 
19
- Acta Anonymizer Financial Adapter
20
 
21
- This model is a fine-tuned adapter for Romanian financial text anonymization.
22
- It's based on XLM-RoBERTa and trained specifically for detecting and anonymizing
23
- PII in Romanian financial documents from Moldova.
24
 
25
- Key features:
26
- - Romanian language support
27
- - Financial domain specialization
28
- - GDPR compliance focused
29
- - High accuracy PII detection
30
 
31
- Use cases:
32
- - Banking document anonymization
33
- - Financial report processing
34
- - Compliance data handling
35
 
 
36
 
37
- **Current Version**: 20250914_035417
38
 
39
- ## Key Features
40
 
41
- - Romanian language support
42
- - GDPR compliance focused
43
- - High accuracy PII detection
44
- - Domain-specific fine-tuning
45
 
46
- ## Use Cases
 
 
 
 
 
 
47
 
48
- - Banking document anonymization
49
- - Financial report processing
50
- - Compliance data handling
51
 
52
- ## Training Data
53
 
54
- This model was trained on synthetic Moldovan PII data for financial domain anonymization.
 
 
55
 
56
- ## Usage
57
 
58
- ```python
59
- from peft import PeftModel
60
- from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
61
 
62
- # Load base model
63
- model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-romanian-ner-ronec")
64
- tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-romanian-ner-ronec")
65
 
66
- # Load adapter
67
- model = PeftModel.from_pretrained(model, "Finguys/acta-anonymizer-financial")
68
 
69
- # Create pipeline
70
- ner_pipeline = pipeline(
71
- "token-classification",
72
- model=model,
73
- tokenizer=tokenizer,
74
- aggregation_strategy="simple"
75
- )
76
 
77
- # Example usage
78
- text = "Ion Popescu are un cont la Banca Transilvania cu IBAN RO49AAAA1B310075938400000."
79
- entities = ner_pipeline(text)
80
- print(entities)
81
- ```
82
 
83
- ## Training
84
 
85
- This model was trained using LoRA (Low-Rank Adaptation) on synthetic Moldovan PII data.
86
 
87
- ## Versions
88
 
89
- - **Latest**: Root level contains the most recent version
90
- - **Archived**: Previous versions are stored in `versions/` folder
91
- - **Version Index**: See `version_history.yaml` for complete version history
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model: EvanD/xlm-roberta-base-romanian-ner-ronec
3
+ library_name: peft
4
  tags:
5
+ - base_model:adapter:EvanD/xlm-roberta-base-romanian-ner-ronec
6
+ - lora
7
+ - transformers
 
 
 
 
 
8
  ---
9
 
10
+ # Model Card for Model ID
11
 
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
 
 
 
 
14
 
 
 
 
 
 
15
 
16
+ ## Model Details
 
 
 
17
 
18
+ ### Model Description
19
 
20
+ <!-- Provide a longer summary of what this model is. -->
21
 
 
22
 
 
 
 
 
23
 
24
+ - **Developed by:** [More Information Needed]
25
+ - **Funded by [optional]:** [More Information Needed]
26
+ - **Shared by [optional]:** [More Information Needed]
27
+ - **Model type:** [More Information Needed]
28
+ - **Language(s) (NLP):** [More Information Needed]
29
+ - **License:** [More Information Needed]
30
+ - **Finetuned from model [optional]:** [More Information Needed]
31
 
32
+ ### Model Sources [optional]
 
 
33
 
34
+ <!-- Provide the basic links for the model. -->
35
 
36
+ - **Repository:** [More Information Needed]
37
+ - **Paper [optional]:** [More Information Needed]
38
+ - **Demo [optional]:** [More Information Needed]
39
 
40
+ ## Uses
41
 
42
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
43
 
44
+ ### Direct Use
 
 
45
 
46
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
47
 
48
+ [More Information Needed]
 
 
 
 
 
 
49
 
50
+ ### Downstream Use [optional]
 
 
 
 
51
 
52
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
 
54
+ [More Information Needed]
55
 
56
+ ### Out-of-Scope Use
57
 
58
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
+
60
+ [More Information Needed]
61
+
62
+ ## Bias, Risks, and Limitations
63
+
64
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
+
66
+ [More Information Needed]
67
+
68
+ ### Recommendations
69
+
70
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
+
72
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
+
74
+ ## How to Get Started with the Model
75
+
76
+ Use the code below to get started with the model.
77
+
78
+ [More Information Needed]
79
+
80
+ ## Training Details
81
+
82
+ ### Training Data
83
+
84
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
+
86
+ [More Information Needed]
87
+
88
+ ### Training Procedure
89
+
90
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
+
92
+ #### Preprocessing [optional]
93
+
94
+ [More Information Needed]
95
+
96
+
97
+ #### Training Hyperparameters
98
+
99
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
+
101
+ #### Speeds, Sizes, Times [optional]
102
+
103
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
+
105
+ [More Information Needed]
106
+
107
+ ## Evaluation
108
+
109
+ <!-- This section describes the evaluation protocols and provides the results. -->
110
+
111
+ ### Testing Data, Factors & Metrics
112
+
113
+ #### Testing Data
114
+
115
+ <!-- This should link to a Dataset Card if possible. -->
116
+
117
+ [More Information Needed]
118
+
119
+ #### Factors
120
+
121
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
+
123
+ [More Information Needed]
124
+
125
+ #### Metrics
126
+
127
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
+
129
+ [More Information Needed]
130
+
131
+ ### Results
132
+
133
+ [More Information Needed]
134
+
135
+ #### Summary
136
+
137
+
138
+
139
+ ## Model Examination [optional]
140
+
141
+ <!-- Relevant interpretability work for the model goes here -->
142
+
143
+ [More Information Needed]
144
+
145
+ ## Environmental Impact
146
+
147
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
+
149
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
+
151
+ - **Hardware Type:** [More Information Needed]
152
+ - **Hours used:** [More Information Needed]
153
+ - **Cloud Provider:** [More Information Needed]
154
+ - **Compute Region:** [More Information Needed]
155
+ - **Carbon Emitted:** [More Information Needed]
156
+
157
+ ## Technical Specifications [optional]
158
+
159
+ ### Model Architecture and Objective
160
+
161
+ [More Information Needed]
162
+
163
+ ### Compute Infrastructure
164
+
165
+ [More Information Needed]
166
+
167
+ #### Hardware
168
+
169
+ [More Information Needed]
170
+
171
+ #### Software
172
+
173
+ [More Information Needed]
174
+
175
+ ## Citation [optional]
176
+
177
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
+
179
+ **BibTeX:**
180
+
181
+ [More Information Needed]
182
+
183
+ **APA:**
184
+
185
+ [More Information Needed]
186
+
187
+ ## Glossary [optional]
188
+
189
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
+
191
+ [More Information Needed]
192
+
193
+ ## More Information [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Authors [optional]
198
+
199
+ [More Information Needed]
200
+
201
+ ## Model Card Contact
202
+
203
+ [More Information Needed]
204
+ ### Framework versions
205
+
206
+ - PEFT 0.17.1
adapter_config.json CHANGED
@@ -29,9 +29,9 @@
29
  "revision": null,
30
  "target_modules": [
31
  "dense",
32
- "key",
33
  "query",
34
- "value"
 
35
  ],
36
  "target_parameters": null,
37
  "task_type": "TOKEN_CLS",
 
29
  "revision": null,
30
  "target_modules": [
31
  "dense",
 
32
  "query",
33
+ "value",
34
+ "key"
35
  ],
36
  "target_parameters": null,
37
  "task_type": "TOKEN_CLS",
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff2623b5e82b5d0e70983ebf344f330bb8f3e1226a105a5aed87766442cec175
3
  size 10899068
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f6538ee1e725e137fe76752f42a04511d52a963b7bef676ab1c896d99c808d0
3
  size 10899068
checkpoint-8000/README.md ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: EvanD/xlm-roberta-base-romanian-ner-ronec
3
+ library_name: peft
4
+ tags:
5
+ - base_model:adapter:EvanD/xlm-roberta-base-romanian-ner-ronec
6
+ - lora
7
+ - transformers
8
+ ---
9
+
10
+ # Model Card for Model ID
11
+
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
+
14
+
15
+
16
+ ## Model Details
17
+
18
+ ### Model Description
19
+
20
+ <!-- Provide a longer summary of what this model is. -->
21
+
22
+
23
+
24
+ - **Developed by:** [More Information Needed]
25
+ - **Funded by [optional]:** [More Information Needed]
26
+ - **Shared by [optional]:** [More Information Needed]
27
+ - **Model type:** [More Information Needed]
28
+ - **Language(s) (NLP):** [More Information Needed]
29
+ - **License:** [More Information Needed]
30
+ - **Finetuned from model [optional]:** [More Information Needed]
31
+
32
+ ### Model Sources [optional]
33
+
34
+ <!-- Provide the basic links for the model. -->
35
+
36
+ - **Repository:** [More Information Needed]
37
+ - **Paper [optional]:** [More Information Needed]
38
+ - **Demo [optional]:** [More Information Needed]
39
+
40
+ ## Uses
41
+
42
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
+
44
+ ### Direct Use
45
+
46
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
+
48
+ [More Information Needed]
49
+
50
+ ### Downstream Use [optional]
51
+
52
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
+
54
+ [More Information Needed]
55
+
56
+ ### Out-of-Scope Use
57
+
58
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
+
60
+ [More Information Needed]
61
+
62
+ ## Bias, Risks, and Limitations
63
+
64
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
+
66
+ [More Information Needed]
67
+
68
+ ### Recommendations
69
+
70
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
+
72
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
+
74
+ ## How to Get Started with the Model
75
+
76
+ Use the code below to get started with the model.
77
+
78
+ [More Information Needed]
79
+
80
+ ## Training Details
81
+
82
+ ### Training Data
83
+
84
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
+
86
+ [More Information Needed]
87
+
88
+ ### Training Procedure
89
+
90
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
+
92
+ #### Preprocessing [optional]
93
+
94
+ [More Information Needed]
95
+
96
+
97
+ #### Training Hyperparameters
98
+
99
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
+
101
+ #### Speeds, Sizes, Times [optional]
102
+
103
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
+
105
+ [More Information Needed]
106
+
107
+ ## Evaluation
108
+
109
+ <!-- This section describes the evaluation protocols and provides the results. -->
110
+
111
+ ### Testing Data, Factors & Metrics
112
+
113
+ #### Testing Data
114
+
115
+ <!-- This should link to a Dataset Card if possible. -->
116
+
117
+ [More Information Needed]
118
+
119
+ #### Factors
120
+
121
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
+
123
+ [More Information Needed]
124
+
125
+ #### Metrics
126
+
127
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
+
129
+ [More Information Needed]
130
+
131
+ ### Results
132
+
133
+ [More Information Needed]
134
+
135
+ #### Summary
136
+
137
+
138
+
139
+ ## Model Examination [optional]
140
+
141
+ <!-- Relevant interpretability work for the model goes here -->
142
+
143
+ [More Information Needed]
144
+
145
+ ## Environmental Impact
146
+
147
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
+
149
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
+
151
+ - **Hardware Type:** [More Information Needed]
152
+ - **Hours used:** [More Information Needed]
153
+ - **Cloud Provider:** [More Information Needed]
154
+ - **Compute Region:** [More Information Needed]
155
+ - **Carbon Emitted:** [More Information Needed]
156
+
157
+ ## Technical Specifications [optional]
158
+
159
+ ### Model Architecture and Objective
160
+
161
+ [More Information Needed]
162
+
163
+ ### Compute Infrastructure
164
+
165
+ [More Information Needed]
166
+
167
+ #### Hardware
168
+
169
+ [More Information Needed]
170
+
171
+ #### Software
172
+
173
+ [More Information Needed]
174
+
175
+ ## Citation [optional]
176
+
177
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
+
179
+ **BibTeX:**
180
+
181
+ [More Information Needed]
182
+
183
+ **APA:**
184
+
185
+ [More Information Needed]
186
+
187
+ ## Glossary [optional]
188
+
189
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
+
191
+ [More Information Needed]
192
+
193
+ ## More Information [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Authors [optional]
198
+
199
+ [More Information Needed]
200
+
201
+ ## Model Card Contact
202
+
203
+ [More Information Needed]
204
+ ### Framework versions
205
+
206
+ - PEFT 0.17.1
checkpoint-8000/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "EvanD/xlm-roberta-base-romanian-ner-ronec",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "classifier",
23
+ "score"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "qalora_group_size": 16,
27
+ "r": 16,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "dense",
32
+ "query",
33
+ "value",
34
+ "key"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "TOKEN_CLS",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-8000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f6538ee1e725e137fe76752f42a04511d52a963b7bef676ab1c896d99c808d0
3
+ size 10899068
checkpoint-8000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1833e690858935a83452d84fbad03a711776aaaadcfec3fb7984a68efda8c74
3
+ size 21881739
checkpoint-8000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd539f5a45211df22b0045edde016f045a350615c710e3630fa74ecc2365b3ce
3
+ size 14645
checkpoint-8000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fca6568f7f9ddae79824057661dc2f909b293d4cff9027842a2246bca50ebddf
3
+ size 1465
checkpoint-8000/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-8000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8373f9cd3d27591e1924426bcc1c8799bc5a9affc4fc857982c5d66668dd1f41
3
+ size 17082832
checkpoint-8000/tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "stride": 0,
55
+ "tokenizer_class": "XLMRobertaTokenizer",
56
+ "truncation_side": "right",
57
+ "truncation_strategy": "longest_first",
58
+ "unk_token": "<unk>"
59
+ }
checkpoint-8000/trainer_state.json ADDED
@@ -0,0 +1,1346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 8000,
3
+ "best_metric": 0.9692734951155788,
4
+ "best_model_checkpoint": "./models/financial_adapter_20250914_060658/checkpoint-8000",
5
+ "epoch": 1.835704451583295,
6
+ "eval_steps": 500,
7
+ "global_step": 8000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.011473152822395595,
14
+ "grad_norm": 6.211507797241211,
15
+ "learning_rate": 4.9000000000000005e-05,
16
+ "loss": 3.7315,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.02294630564479119,
21
+ "grad_norm": 0.805833637714386,
22
+ "learning_rate": 9.900000000000001e-05,
23
+ "loss": 1.2821,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.03441945846718678,
28
+ "grad_norm": 0.7927971482276917,
29
+ "learning_rate": 0.000149,
30
+ "loss": 0.644,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.04589261128958238,
35
+ "grad_norm": 0.95986407995224,
36
+ "learning_rate": 0.000199,
37
+ "loss": 0.3733,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.05736576411197797,
42
+ "grad_norm": 0.7364535927772522,
43
+ "learning_rate": 0.000249,
44
+ "loss": 0.2499,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.06883891693437356,
49
+ "grad_norm": 0.8872820734977722,
50
+ "learning_rate": 0.000299,
51
+ "loss": 0.1937,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.08031206975676916,
56
+ "grad_norm": 0.5113154053688049,
57
+ "learning_rate": 0.00034899999999999997,
58
+ "loss": 0.1646,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.09178522257916476,
63
+ "grad_norm": 0.7045756578445435,
64
+ "learning_rate": 0.00039900000000000005,
65
+ "loss": 0.1466,
66
+ "step": 400
67
+ },
68
+ {
69
+ "epoch": 0.10325837540156035,
70
+ "grad_norm": 0.5810624957084656,
71
+ "learning_rate": 0.000449,
72
+ "loss": 0.1314,
73
+ "step": 450
74
+ },
75
+ {
76
+ "epoch": 0.11473152822395594,
77
+ "grad_norm": 0.5461702346801758,
78
+ "learning_rate": 0.000499,
79
+ "loss": 0.1276,
80
+ "step": 500
81
+ },
82
+ {
83
+ "epoch": 0.11473152822395594,
84
+ "eval_accuracy": 0.970071396651017,
85
+ "eval_f1": 0.931817690038444,
86
+ "eval_loss": 0.1108999103307724,
87
+ "eval_precision": 0.9314176027125088,
88
+ "eval_recall": 0.9343327320933421,
89
+ "eval_runtime": 138.5938,
90
+ "eval_samples_per_second": 143.729,
91
+ "eval_steps_per_second": 8.983,
92
+ "step": 500
93
+ },
94
+ {
95
+ "epoch": 0.12620468104635155,
96
+ "grad_norm": 0.5111148357391357,
97
+ "learning_rate": 0.0004970180136319377,
98
+ "loss": 0.1157,
99
+ "step": 550
100
+ },
101
+ {
102
+ "epoch": 0.13767783386874713,
103
+ "grad_norm": 0.5293119549751282,
104
+ "learning_rate": 0.000493975170399221,
105
+ "loss": 0.1091,
106
+ "step": 600
107
+ },
108
+ {
109
+ "epoch": 0.14915098669114274,
110
+ "grad_norm": 0.5645154714584351,
111
+ "learning_rate": 0.0004909323271665044,
112
+ "loss": 0.1054,
113
+ "step": 650
114
+ },
115
+ {
116
+ "epoch": 0.16062413951353832,
117
+ "grad_norm": 0.3088572025299072,
118
+ "learning_rate": 0.0004878894839337877,
119
+ "loss": 0.1017,
120
+ "step": 700
121
+ },
122
+ {
123
+ "epoch": 0.1720972923359339,
124
+ "grad_norm": 0.3965695798397064,
125
+ "learning_rate": 0.0004848466407010711,
126
+ "loss": 0.0881,
127
+ "step": 750
128
+ },
129
+ {
130
+ "epoch": 0.18357044515832951,
131
+ "grad_norm": 0.44487106800079346,
132
+ "learning_rate": 0.0004818037974683545,
133
+ "loss": 0.0908,
134
+ "step": 800
135
+ },
136
+ {
137
+ "epoch": 0.1950435979807251,
138
+ "grad_norm": 0.5573059320449829,
139
+ "learning_rate": 0.00047876095423563783,
140
+ "loss": 0.0923,
141
+ "step": 850
142
+ },
143
+ {
144
+ "epoch": 0.2065167508031207,
145
+ "grad_norm": 0.242904931306839,
146
+ "learning_rate": 0.00047571811100292113,
147
+ "loss": 0.0893,
148
+ "step": 900
149
+ },
150
+ {
151
+ "epoch": 0.2179899036255163,
152
+ "grad_norm": 0.4724123477935791,
153
+ "learning_rate": 0.0004726752677702045,
154
+ "loss": 0.0878,
155
+ "step": 950
156
+ },
157
+ {
158
+ "epoch": 0.22946305644791187,
159
+ "grad_norm": 0.32161369919776917,
160
+ "learning_rate": 0.00046963242453748784,
161
+ "loss": 0.0816,
162
+ "step": 1000
163
+ },
164
+ {
165
+ "epoch": 0.22946305644791187,
166
+ "eval_accuracy": 0.977059938804148,
167
+ "eval_f1": 0.9485042354538835,
168
+ "eval_loss": 0.07678939402103424,
169
+ "eval_precision": 0.948923113654349,
170
+ "eval_recall": 0.9476371557635869,
171
+ "eval_runtime": 118.5842,
172
+ "eval_samples_per_second": 167.982,
173
+ "eval_steps_per_second": 10.499,
174
+ "step": 1000
175
+ },
176
+ {
177
+ "epoch": 0.24093620927030748,
178
+ "grad_norm": 1.1815085411071777,
179
+ "learning_rate": 0.0004665895813047712,
180
+ "loss": 0.0837,
181
+ "step": 1050
182
+ },
183
+ {
184
+ "epoch": 0.2524093620927031,
185
+ "grad_norm": 0.26893287897109985,
186
+ "learning_rate": 0.00046354673807205455,
187
+ "loss": 0.0816,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 0.2638825149150987,
192
+ "grad_norm": 0.31159281730651855,
193
+ "learning_rate": 0.0004605038948393379,
194
+ "loss": 0.082,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 0.27535566773749426,
199
+ "grad_norm": 0.3065606951713562,
200
+ "learning_rate": 0.0004574610516066212,
201
+ "loss": 0.0742,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 0.28682882055988984,
206
+ "grad_norm": 0.2774142324924469,
207
+ "learning_rate": 0.00045441820837390456,
208
+ "loss": 0.0792,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 0.2983019733822855,
213
+ "grad_norm": 0.23560093343257904,
214
+ "learning_rate": 0.0004513753651411879,
215
+ "loss": 0.0719,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 0.30977512620468106,
220
+ "grad_norm": 0.29983004927635193,
221
+ "learning_rate": 0.0004483325219084713,
222
+ "loss": 0.0722,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 0.32124827902707664,
227
+ "grad_norm": 0.26415759325027466,
228
+ "learning_rate": 0.00044528967867575467,
229
+ "loss": 0.0724,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 0.3327214318494722,
234
+ "grad_norm": 0.34820911288261414,
235
+ "learning_rate": 0.000442246835443038,
236
+ "loss": 0.0756,
237
+ "step": 1450
238
+ },
239
+ {
240
+ "epoch": 0.3441945846718678,
241
+ "grad_norm": 0.35296013951301575,
242
+ "learning_rate": 0.0004392039922103213,
243
+ "loss": 0.0676,
244
+ "step": 1500
245
+ },
246
+ {
247
+ "epoch": 0.3441945846718678,
248
+ "eval_accuracy": 0.9795261937874608,
249
+ "eval_f1": 0.9560398155032158,
250
+ "eval_loss": 0.06693130731582642,
251
+ "eval_precision": 0.9546461779958985,
252
+ "eval_recall": 0.9579011468881853,
253
+ "eval_runtime": 122.2351,
254
+ "eval_samples_per_second": 162.965,
255
+ "eval_steps_per_second": 10.185,
256
+ "step": 1500
257
+ },
258
+ {
259
+ "epoch": 0.35566773749426345,
260
+ "grad_norm": 0.4301516115665436,
261
+ "learning_rate": 0.0004361611489776047,
262
+ "loss": 0.0719,
263
+ "step": 1550
264
+ },
265
+ {
266
+ "epoch": 0.36714089031665903,
267
+ "grad_norm": 0.3780372440814972,
268
+ "learning_rate": 0.00043311830574488803,
269
+ "loss": 0.072,
270
+ "step": 1600
271
+ },
272
+ {
273
+ "epoch": 0.3786140431390546,
274
+ "grad_norm": 0.3334237337112427,
275
+ "learning_rate": 0.0004300754625121714,
276
+ "loss": 0.0664,
277
+ "step": 1650
278
+ },
279
+ {
280
+ "epoch": 0.3900871959614502,
281
+ "grad_norm": 0.21125715970993042,
282
+ "learning_rate": 0.00042703261927945474,
283
+ "loss": 0.0708,
284
+ "step": 1700
285
+ },
286
+ {
287
+ "epoch": 0.4015603487838458,
288
+ "grad_norm": 0.36593177914619446,
289
+ "learning_rate": 0.0004239897760467381,
290
+ "loss": 0.0674,
291
+ "step": 1750
292
+ },
293
+ {
294
+ "epoch": 0.4130335016062414,
295
+ "grad_norm": 0.5742707252502441,
296
+ "learning_rate": 0.0004209469328140214,
297
+ "loss": 0.0709,
298
+ "step": 1800
299
+ },
300
+ {
301
+ "epoch": 0.424506654428637,
302
+ "grad_norm": 0.43670088052749634,
303
+ "learning_rate": 0.00041790408958130475,
304
+ "loss": 0.0626,
305
+ "step": 1850
306
+ },
307
+ {
308
+ "epoch": 0.4359798072510326,
309
+ "grad_norm": 0.3064088225364685,
310
+ "learning_rate": 0.0004148612463485881,
311
+ "loss": 0.067,
312
+ "step": 1900
313
+ },
314
+ {
315
+ "epoch": 0.44745296007342816,
316
+ "grad_norm": 0.26380443572998047,
317
+ "learning_rate": 0.0004118184031158715,
318
+ "loss": 0.0673,
319
+ "step": 1950
320
+ },
321
+ {
322
+ "epoch": 0.45892611289582375,
323
+ "grad_norm": 0.2760469913482666,
324
+ "learning_rate": 0.00040877555988315487,
325
+ "loss": 0.0686,
326
+ "step": 2000
327
+ },
328
+ {
329
+ "epoch": 0.45892611289582375,
330
+ "eval_accuracy": 0.9792398202709974,
331
+ "eval_f1": 0.9566771424147363,
332
+ "eval_loss": 0.06424970924854279,
333
+ "eval_precision": 0.9518499916341474,
334
+ "eval_recall": 0.9651666524432667,
335
+ "eval_runtime": 119.1986,
336
+ "eval_samples_per_second": 167.116,
337
+ "eval_steps_per_second": 10.445,
338
+ "step": 2000
339
+ },
340
+ {
341
+ "epoch": 0.4703992657182194,
342
+ "grad_norm": 0.36512625217437744,
343
+ "learning_rate": 0.0004057327166504382,
344
+ "loss": 0.065,
345
+ "step": 2050
346
+ },
347
+ {
348
+ "epoch": 0.48187241854061497,
349
+ "grad_norm": 0.3270319402217865,
350
+ "learning_rate": 0.0004026898734177215,
351
+ "loss": 0.0663,
352
+ "step": 2100
353
+ },
354
+ {
355
+ "epoch": 0.49334557136301055,
356
+ "grad_norm": 0.2962779700756073,
357
+ "learning_rate": 0.0003996470301850049,
358
+ "loss": 0.0681,
359
+ "step": 2150
360
+ },
361
+ {
362
+ "epoch": 0.5048187241854062,
363
+ "grad_norm": 0.4675407409667969,
364
+ "learning_rate": 0.00039660418695228823,
365
+ "loss": 0.0715,
366
+ "step": 2200
367
+ },
368
+ {
369
+ "epoch": 0.5162918770078018,
370
+ "grad_norm": 0.27184540033340454,
371
+ "learning_rate": 0.0003935613437195716,
372
+ "loss": 0.066,
373
+ "step": 2250
374
+ },
375
+ {
376
+ "epoch": 0.5277650298301974,
377
+ "grad_norm": 0.3290219008922577,
378
+ "learning_rate": 0.00039051850048685494,
379
+ "loss": 0.0666,
380
+ "step": 2300
381
+ },
382
+ {
383
+ "epoch": 0.5392381826525929,
384
+ "grad_norm": 0.18070432543754578,
385
+ "learning_rate": 0.00038747565725413824,
386
+ "loss": 0.0626,
387
+ "step": 2350
388
+ },
389
+ {
390
+ "epoch": 0.5507113354749885,
391
+ "grad_norm": 0.27334141731262207,
392
+ "learning_rate": 0.0003844328140214216,
393
+ "loss": 0.0595,
394
+ "step": 2400
395
+ },
396
+ {
397
+ "epoch": 0.5621844882973841,
398
+ "grad_norm": 0.29450327157974243,
399
+ "learning_rate": 0.00038138997078870495,
400
+ "loss": 0.0655,
401
+ "step": 2450
402
+ },
403
+ {
404
+ "epoch": 0.5736576411197797,
405
+ "grad_norm": 0.49441081285476685,
406
+ "learning_rate": 0.0003783471275559883,
407
+ "loss": 0.0644,
408
+ "step": 2500
409
+ },
410
+ {
411
+ "epoch": 0.5736576411197797,
412
+ "eval_accuracy": 0.9802089297119565,
413
+ "eval_f1": 0.9567031119548932,
414
+ "eval_loss": 0.060597751289606094,
415
+ "eval_precision": 0.9516312084805371,
416
+ "eval_recall": 0.9679770998439283,
417
+ "eval_runtime": 122.2434,
418
+ "eval_samples_per_second": 162.954,
419
+ "eval_steps_per_second": 10.185,
420
+ "step": 2500
421
+ },
422
+ {
423
+ "epoch": 0.5851307939421753,
424
+ "grad_norm": 0.2936118543148041,
425
+ "learning_rate": 0.00037530428432327166,
426
+ "loss": 0.0726,
427
+ "step": 2550
428
+ },
429
+ {
430
+ "epoch": 0.596603946764571,
431
+ "grad_norm": 0.29937854409217834,
432
+ "learning_rate": 0.00037226144109055506,
433
+ "loss": 0.0646,
434
+ "step": 2600
435
+ },
436
+ {
437
+ "epoch": 0.6080770995869665,
438
+ "grad_norm": 0.2445821762084961,
439
+ "learning_rate": 0.00036921859785783836,
440
+ "loss": 0.0666,
441
+ "step": 2650
442
+ },
443
+ {
444
+ "epoch": 0.6195502524093621,
445
+ "grad_norm": 0.36757129430770874,
446
+ "learning_rate": 0.0003661757546251217,
447
+ "loss": 0.0773,
448
+ "step": 2700
449
+ },
450
+ {
451
+ "epoch": 0.6310234052317577,
452
+ "grad_norm": 0.16537484526634216,
453
+ "learning_rate": 0.0003631329113924051,
454
+ "loss": 0.0605,
455
+ "step": 2750
456
+ },
457
+ {
458
+ "epoch": 0.6424965580541533,
459
+ "grad_norm": 0.4437476396560669,
460
+ "learning_rate": 0.00036009006815968843,
461
+ "loss": 0.0641,
462
+ "step": 2800
463
+ },
464
+ {
465
+ "epoch": 0.6539697108765489,
466
+ "grad_norm": 0.29756319522857666,
467
+ "learning_rate": 0.0003570472249269718,
468
+ "loss": 0.0611,
469
+ "step": 2850
470
+ },
471
+ {
472
+ "epoch": 0.6654428636989445,
473
+ "grad_norm": 0.22879567742347717,
474
+ "learning_rate": 0.00035400438169425514,
475
+ "loss": 0.0591,
476
+ "step": 2900
477
+ },
478
+ {
479
+ "epoch": 0.67691601652134,
480
+ "grad_norm": 0.4005909264087677,
481
+ "learning_rate": 0.00035096153846153844,
482
+ "loss": 0.0648,
483
+ "step": 2950
484
+ },
485
+ {
486
+ "epoch": 0.6883891693437356,
487
+ "grad_norm": 0.4542585611343384,
488
+ "learning_rate": 0.0003479186952288218,
489
+ "loss": 0.0574,
490
+ "step": 3000
491
+ },
492
+ {
493
+ "epoch": 0.6883891693437356,
494
+ "eval_accuracy": 0.9813785676808373,
495
+ "eval_f1": 0.9602148371355144,
496
+ "eval_loss": 0.056131936609745026,
497
+ "eval_precision": 0.9611373242869105,
498
+ "eval_recall": 0.9617183217159495,
499
+ "eval_runtime": 119.7516,
500
+ "eval_samples_per_second": 166.344,
501
+ "eval_steps_per_second": 10.397,
502
+ "step": 3000
503
+ },
504
+ {
505
+ "epoch": 0.6998623221661312,
506
+ "grad_norm": 0.16639067232608795,
507
+ "learning_rate": 0.00034487585199610514,
508
+ "loss": 0.0583,
509
+ "step": 3050
510
+ },
511
+ {
512
+ "epoch": 0.7113354749885269,
513
+ "grad_norm": 0.24682307243347168,
514
+ "learning_rate": 0.0003418330087633885,
515
+ "loss": 0.0599,
516
+ "step": 3100
517
+ },
518
+ {
519
+ "epoch": 0.7228086278109225,
520
+ "grad_norm": 0.8064585328102112,
521
+ "learning_rate": 0.00033879016553067185,
522
+ "loss": 0.0572,
523
+ "step": 3150
524
+ },
525
+ {
526
+ "epoch": 0.7342817806333181,
527
+ "grad_norm": 0.19956223666667938,
528
+ "learning_rate": 0.00033574732229795526,
529
+ "loss": 0.0582,
530
+ "step": 3200
531
+ },
532
+ {
533
+ "epoch": 0.7457549334557136,
534
+ "grad_norm": 0.24573862552642822,
535
+ "learning_rate": 0.00033270447906523856,
536
+ "loss": 0.0641,
537
+ "step": 3250
538
+ },
539
+ {
540
+ "epoch": 0.7572280862781092,
541
+ "grad_norm": 0.2404450923204422,
542
+ "learning_rate": 0.0003296616358325219,
543
+ "loss": 0.0662,
544
+ "step": 3300
545
+ },
546
+ {
547
+ "epoch": 0.7687012391005048,
548
+ "grad_norm": 0.2951129376888275,
549
+ "learning_rate": 0.00032661879259980527,
550
+ "loss": 0.0593,
551
+ "step": 3350
552
+ },
553
+ {
554
+ "epoch": 0.7801743919229004,
555
+ "grad_norm": 0.27735939621925354,
556
+ "learning_rate": 0.0003235759493670886,
557
+ "loss": 0.0551,
558
+ "step": 3400
559
+ },
560
+ {
561
+ "epoch": 0.791647544745296,
562
+ "grad_norm": 0.22863982617855072,
563
+ "learning_rate": 0.000320533106134372,
564
+ "loss": 0.0528,
565
+ "step": 3450
566
+ },
567
+ {
568
+ "epoch": 0.8031206975676916,
569
+ "grad_norm": 0.15240560472011566,
570
+ "learning_rate": 0.00031749026290165533,
571
+ "loss": 0.0607,
572
+ "step": 3500
573
+ },
574
+ {
575
+ "epoch": 0.8031206975676916,
576
+ "eval_accuracy": 0.9817161352139049,
577
+ "eval_f1": 0.9618400997245777,
578
+ "eval_loss": 0.05566277727484703,
579
+ "eval_precision": 0.9594136950612108,
580
+ "eval_recall": 0.9670788559757807,
581
+ "eval_runtime": 119.7185,
582
+ "eval_samples_per_second": 166.39,
583
+ "eval_steps_per_second": 10.399,
584
+ "step": 3500
585
+ },
586
+ {
587
+ "epoch": 0.8145938503900872,
588
+ "grad_norm": 0.22435520589351654,
589
+ "learning_rate": 0.00031444741966893863,
590
+ "loss": 0.0619,
591
+ "step": 3550
592
+ },
593
+ {
594
+ "epoch": 0.8260670032124828,
595
+ "grad_norm": 0.23223020136356354,
596
+ "learning_rate": 0.000311404576436222,
597
+ "loss": 0.0563,
598
+ "step": 3600
599
+ },
600
+ {
601
+ "epoch": 0.8375401560348784,
602
+ "grad_norm": 0.3050450384616852,
603
+ "learning_rate": 0.00030836173320350534,
604
+ "loss": 0.0581,
605
+ "step": 3650
606
+ },
607
+ {
608
+ "epoch": 0.849013308857274,
609
+ "grad_norm": 0.2995171546936035,
610
+ "learning_rate": 0.0003053188899707887,
611
+ "loss": 0.0539,
612
+ "step": 3700
613
+ },
614
+ {
615
+ "epoch": 0.8604864616796696,
616
+ "grad_norm": 0.25285205245018005,
617
+ "learning_rate": 0.00030227604673807205,
618
+ "loss": 0.0597,
619
+ "step": 3750
620
+ },
621
+ {
622
+ "epoch": 0.8719596145020652,
623
+ "grad_norm": 0.4498445689678192,
624
+ "learning_rate": 0.00029923320350535546,
625
+ "loss": 0.0582,
626
+ "step": 3800
627
+ },
628
+ {
629
+ "epoch": 0.8834327673244607,
630
+ "grad_norm": 0.24611692130565643,
631
+ "learning_rate": 0.00029619036027263876,
632
+ "loss": 0.0568,
633
+ "step": 3850
634
+ },
635
+ {
636
+ "epoch": 0.8949059201468563,
637
+ "grad_norm": 0.3124069571495056,
638
+ "learning_rate": 0.0002931475170399221,
639
+ "loss": 0.0591,
640
+ "step": 3900
641
+ },
642
+ {
643
+ "epoch": 0.9063790729692519,
644
+ "grad_norm": 0.2108747363090515,
645
+ "learning_rate": 0.00029010467380720547,
646
+ "loss": 0.0548,
647
+ "step": 3950
648
+ },
649
+ {
650
+ "epoch": 0.9178522257916475,
651
+ "grad_norm": 0.22898589074611664,
652
+ "learning_rate": 0.0002870618305744888,
653
+ "loss": 0.0603,
654
+ "step": 4000
655
+ },
656
+ {
657
+ "epoch": 0.9178522257916475,
658
+ "eval_accuracy": 0.9814983929773434,
659
+ "eval_f1": 0.9609698369421166,
660
+ "eval_loss": 0.05435480922460556,
661
+ "eval_precision": 0.9558103401819693,
662
+ "eval_recall": 0.9701771464195363,
663
+ "eval_runtime": 119.6005,
664
+ "eval_samples_per_second": 166.554,
665
+ "eval_steps_per_second": 10.41,
666
+ "step": 4000
667
+ },
668
+ {
669
+ "epoch": 0.9293253786140432,
670
+ "grad_norm": 0.27442702651023865,
671
+ "learning_rate": 0.0002840189873417722,
672
+ "loss": 0.0596,
673
+ "step": 4050
674
+ },
675
+ {
676
+ "epoch": 0.9407985314364388,
677
+ "grad_norm": 0.1897002011537552,
678
+ "learning_rate": 0.00028097614410905553,
679
+ "loss": 0.0575,
680
+ "step": 4100
681
+ },
682
+ {
683
+ "epoch": 0.9522716842588343,
684
+ "grad_norm": 0.31244686245918274,
685
+ "learning_rate": 0.00027793330087633883,
686
+ "loss": 0.0569,
687
+ "step": 4150
688
+ },
689
+ {
690
+ "epoch": 0.9637448370812299,
691
+ "grad_norm": 0.23371103405952454,
692
+ "learning_rate": 0.0002748904576436222,
693
+ "loss": 0.0582,
694
+ "step": 4200
695
+ },
696
+ {
697
+ "epoch": 0.9752179899036255,
698
+ "grad_norm": 0.2830590307712555,
699
+ "learning_rate": 0.00027184761441090554,
700
+ "loss": 0.0551,
701
+ "step": 4250
702
+ },
703
+ {
704
+ "epoch": 0.9866911427260211,
705
+ "grad_norm": 0.17691777646541595,
706
+ "learning_rate": 0.0002688047711781889,
707
+ "loss": 0.0556,
708
+ "step": 4300
709
+ },
710
+ {
711
+ "epoch": 0.9981642955484167,
712
+ "grad_norm": 0.32038599252700806,
713
+ "learning_rate": 0.00026576192794547224,
714
+ "loss": 0.0524,
715
+ "step": 4350
716
+ },
717
+ {
718
+ "epoch": 1.0096374483708124,
719
+ "grad_norm": 0.1972804069519043,
720
+ "learning_rate": 0.00026271908471275565,
721
+ "loss": 0.0521,
722
+ "step": 4400
723
+ },
724
+ {
725
+ "epoch": 1.0211106011932078,
726
+ "grad_norm": 0.35761380195617676,
727
+ "learning_rate": 0.00025967624148003895,
728
+ "loss": 0.0572,
729
+ "step": 4450
730
+ },
731
+ {
732
+ "epoch": 1.0325837540156035,
733
+ "grad_norm": 0.285580039024353,
734
+ "learning_rate": 0.0002566333982473223,
735
+ "loss": 0.0487,
736
+ "step": 4500
737
+ },
738
+ {
739
+ "epoch": 1.0325837540156035,
740
+ "eval_accuracy": 0.9825631838117813,
741
+ "eval_f1": 0.9641975912207242,
742
+ "eval_loss": 0.05233108997344971,
743
+ "eval_precision": 0.9613379614792094,
744
+ "eval_recall": 0.9699254645627606,
745
+ "eval_runtime": 119.1944,
746
+ "eval_samples_per_second": 167.122,
747
+ "eval_steps_per_second": 10.445,
748
+ "step": 4500
749
+ },
750
+ {
751
+ "epoch": 1.044056906837999,
752
+ "grad_norm": 0.2022152990102768,
753
+ "learning_rate": 0.00025359055501460566,
754
+ "loss": 0.0539,
755
+ "step": 4550
756
+ },
757
+ {
758
+ "epoch": 1.0555300596603947,
759
+ "grad_norm": 0.29692327976226807,
760
+ "learning_rate": 0.000250547711781889,
761
+ "loss": 0.047,
762
+ "step": 4600
763
+ },
764
+ {
765
+ "epoch": 1.0670032124827902,
766
+ "grad_norm": 0.2476482093334198,
767
+ "learning_rate": 0.0002475048685491723,
768
+ "loss": 0.053,
769
+ "step": 4650
770
+ },
771
+ {
772
+ "epoch": 1.0784763653051859,
773
+ "grad_norm": 0.17114070057868958,
774
+ "learning_rate": 0.0002444620253164557,
775
+ "loss": 0.0519,
776
+ "step": 4700
777
+ },
778
+ {
779
+ "epoch": 1.0899495181275816,
780
+ "grad_norm": 0.11371100693941116,
781
+ "learning_rate": 0.00024141918208373905,
782
+ "loss": 0.0547,
783
+ "step": 4750
784
+ },
785
+ {
786
+ "epoch": 1.101422670949977,
787
+ "grad_norm": 0.25711262226104736,
788
+ "learning_rate": 0.00023837633885102238,
789
+ "loss": 0.0543,
790
+ "step": 4800
791
+ },
792
+ {
793
+ "epoch": 1.1128958237723727,
794
+ "grad_norm": 0.2982866168022156,
795
+ "learning_rate": 0.00023533349561830576,
796
+ "loss": 0.0561,
797
+ "step": 4850
798
+ },
799
+ {
800
+ "epoch": 1.1243689765947682,
801
+ "grad_norm": 0.3269876539707184,
802
+ "learning_rate": 0.00023229065238558911,
803
+ "loss": 0.0494,
804
+ "step": 4900
805
+ },
806
+ {
807
+ "epoch": 1.135842129417164,
808
+ "grad_norm": 0.26729336380958557,
809
+ "learning_rate": 0.00022924780915287244,
810
+ "loss": 0.047,
811
+ "step": 4950
812
+ },
813
+ {
814
+ "epoch": 1.1473152822395594,
815
+ "grad_norm": 0.39272695779800415,
816
+ "learning_rate": 0.0002262049659201558,
817
+ "loss": 0.0517,
818
+ "step": 5000
819
+ },
820
+ {
821
+ "epoch": 1.1473152822395594,
822
+ "eval_accuracy": 0.9833051617205572,
823
+ "eval_f1": 0.9649115475893709,
824
+ "eval_loss": 0.05118980631232262,
825
+ "eval_precision": 0.96238450457423,
826
+ "eval_recall": 0.9685961793536983,
827
+ "eval_runtime": 120.695,
828
+ "eval_samples_per_second": 165.044,
829
+ "eval_steps_per_second": 10.315,
830
+ "step": 5000
831
+ },
832
+ {
833
+ "epoch": 1.158788435061955,
834
+ "grad_norm": 0.2898092567920685,
835
+ "learning_rate": 0.00022316212268743915,
836
+ "loss": 0.0499,
837
+ "step": 5050
838
+ },
839
+ {
840
+ "epoch": 1.1702615878843505,
841
+ "grad_norm": 0.20259062945842743,
842
+ "learning_rate": 0.00022011927945472248,
843
+ "loss": 0.0506,
844
+ "step": 5100
845
+ },
846
+ {
847
+ "epoch": 1.1817347407067462,
848
+ "grad_norm": 0.26172712445259094,
849
+ "learning_rate": 0.00021707643622200586,
850
+ "loss": 0.0512,
851
+ "step": 5150
852
+ },
853
+ {
854
+ "epoch": 1.193207893529142,
855
+ "grad_norm": 0.26839691400527954,
856
+ "learning_rate": 0.0002140335929892892,
857
+ "loss": 0.0524,
858
+ "step": 5200
859
+ },
860
+ {
861
+ "epoch": 1.2046810463515374,
862
+ "grad_norm": 0.19788499176502228,
863
+ "learning_rate": 0.00021099074975657254,
864
+ "loss": 0.0532,
865
+ "step": 5250
866
+ },
867
+ {
868
+ "epoch": 1.216154199173933,
869
+ "grad_norm": 0.22159354388713837,
870
+ "learning_rate": 0.0002079479065238559,
871
+ "loss": 0.0539,
872
+ "step": 5300
873
+ },
874
+ {
875
+ "epoch": 1.2276273519963286,
876
+ "grad_norm": 0.274666428565979,
877
+ "learning_rate": 0.00020490506329113925,
878
+ "loss": 0.0533,
879
+ "step": 5350
880
+ },
881
+ {
882
+ "epoch": 1.2391005048187242,
883
+ "grad_norm": 0.2635292410850525,
884
+ "learning_rate": 0.00020186222005842257,
885
+ "loss": 0.0511,
886
+ "step": 5400
887
+ },
888
+ {
889
+ "epoch": 1.2505736576411197,
890
+ "grad_norm": 0.19532188773155212,
891
+ "learning_rate": 0.00019881937682570596,
892
+ "loss": 0.0493,
893
+ "step": 5450
894
+ },
895
+ {
896
+ "epoch": 1.2620468104635154,
897
+ "grad_norm": 0.17796900868415833,
898
+ "learning_rate": 0.0001957765335929893,
899
+ "loss": 0.049,
900
+ "step": 5500
901
+ },
902
+ {
903
+ "epoch": 1.2620468104635154,
904
+ "eval_accuracy": 0.9832237878251686,
905
+ "eval_f1": 0.9660702602061538,
906
+ "eval_loss": 0.05031489580869675,
907
+ "eval_precision": 0.9649079959020276,
908
+ "eval_recall": 0.9685498930352109,
909
+ "eval_runtime": 121.0196,
910
+ "eval_samples_per_second": 164.601,
911
+ "eval_steps_per_second": 10.288,
912
+ "step": 5500
913
+ },
914
+ {
915
+ "epoch": 1.2735199632859109,
916
+ "grad_norm": 0.2736414968967438,
917
+ "learning_rate": 0.00019273369036027264,
918
+ "loss": 0.0518,
919
+ "step": 5550
920
+ },
921
+ {
922
+ "epoch": 1.2849931161083066,
923
+ "grad_norm": 0.27350395917892456,
924
+ "learning_rate": 0.000189690847127556,
925
+ "loss": 0.0463,
926
+ "step": 5600
927
+ },
928
+ {
929
+ "epoch": 1.2964662689307023,
930
+ "grad_norm": 0.20141524076461792,
931
+ "learning_rate": 0.00018664800389483935,
932
+ "loss": 0.0531,
933
+ "step": 5650
934
+ },
935
+ {
936
+ "epoch": 1.3079394217530977,
937
+ "grad_norm": 0.2544547915458679,
938
+ "learning_rate": 0.00018360516066212267,
939
+ "loss": 0.0499,
940
+ "step": 5700
941
+ },
942
+ {
943
+ "epoch": 1.3194125745754932,
944
+ "grad_norm": 0.15668709576129913,
945
+ "learning_rate": 0.00018056231742940605,
946
+ "loss": 0.0489,
947
+ "step": 5750
948
+ },
949
+ {
950
+ "epoch": 1.330885727397889,
951
+ "grad_norm": 0.254363089799881,
952
+ "learning_rate": 0.0001775194741966894,
953
+ "loss": 0.0514,
954
+ "step": 5800
955
+ },
956
+ {
957
+ "epoch": 1.3423588802202846,
958
+ "grad_norm": 0.34548887610435486,
959
+ "learning_rate": 0.00017447663096397273,
960
+ "loss": 0.0535,
961
+ "step": 5850
962
+ },
963
+ {
964
+ "epoch": 1.35383203304268,
965
+ "grad_norm": 0.2949070334434509,
966
+ "learning_rate": 0.0001714337877312561,
967
+ "loss": 0.0483,
968
+ "step": 5900
969
+ },
970
+ {
971
+ "epoch": 1.3653051858650758,
972
+ "grad_norm": 0.18696388602256775,
973
+ "learning_rate": 0.00016839094449853944,
974
+ "loss": 0.0491,
975
+ "step": 5950
976
+ },
977
+ {
978
+ "epoch": 1.3767783386874712,
979
+ "grad_norm": 0.1810847669839859,
980
+ "learning_rate": 0.00016534810126582277,
981
+ "loss": 0.045,
982
+ "step": 6000
983
+ },
984
+ {
985
+ "epoch": 1.3767783386874712,
986
+ "eval_accuracy": 0.9835904174637322,
987
+ "eval_f1": 0.9660336726703211,
988
+ "eval_loss": 0.04917869716882706,
989
+ "eval_precision": 0.9631038353574605,
990
+ "eval_recall": 0.9706993139499732,
991
+ "eval_runtime": 119.0826,
992
+ "eval_samples_per_second": 167.279,
993
+ "eval_steps_per_second": 10.455,
994
+ "step": 6000
995
+ },
996
+ {
997
+ "epoch": 1.388251491509867,
998
+ "grad_norm": 0.15973134338855743,
999
+ "learning_rate": 0.00016230525803310615,
1000
+ "loss": 0.0444,
1001
+ "step": 6050
1002
+ },
1003
+ {
1004
+ "epoch": 1.3997246443322626,
1005
+ "grad_norm": 0.24404683709144592,
1006
+ "learning_rate": 0.0001592624148003895,
1007
+ "loss": 0.046,
1008
+ "step": 6100
1009
+ },
1010
+ {
1011
+ "epoch": 1.411197797154658,
1012
+ "grad_norm": 0.3005557656288147,
1013
+ "learning_rate": 0.00015621957156767283,
1014
+ "loss": 0.0525,
1015
+ "step": 6150
1016
+ },
1017
+ {
1018
+ "epoch": 1.4226709499770536,
1019
+ "grad_norm": 0.2723326086997986,
1020
+ "learning_rate": 0.0001531767283349562,
1021
+ "loss": 0.0487,
1022
+ "step": 6200
1023
+ },
1024
+ {
1025
+ "epoch": 1.4341441027994493,
1026
+ "grad_norm": 0.2460734099149704,
1027
+ "learning_rate": 0.00015013388510223954,
1028
+ "loss": 0.0455,
1029
+ "step": 6250
1030
+ },
1031
+ {
1032
+ "epoch": 1.445617255621845,
1033
+ "grad_norm": 0.32472339272499084,
1034
+ "learning_rate": 0.00014709104186952287,
1035
+ "loss": 0.0444,
1036
+ "step": 6300
1037
+ },
1038
+ {
1039
+ "epoch": 1.4570904084442404,
1040
+ "grad_norm": 0.35655590891838074,
1041
+ "learning_rate": 0.00014404819863680625,
1042
+ "loss": 0.053,
1043
+ "step": 6350
1044
+ },
1045
+ {
1046
+ "epoch": 1.4685635612666361,
1047
+ "grad_norm": 0.23245665431022644,
1048
+ "learning_rate": 0.0001410053554040896,
1049
+ "loss": 0.0472,
1050
+ "step": 6400
1051
+ },
1052
+ {
1053
+ "epoch": 1.4800367140890316,
1054
+ "grad_norm": 0.16704195737838745,
1055
+ "learning_rate": 0.00013796251217137293,
1056
+ "loss": 0.0483,
1057
+ "step": 6450
1058
+ },
1059
+ {
1060
+ "epoch": 1.4915098669114273,
1061
+ "grad_norm": 0.16793860495090485,
1062
+ "learning_rate": 0.00013491966893865629,
1063
+ "loss": 0.0453,
1064
+ "step": 6500
1065
+ },
1066
+ {
1067
+ "epoch": 1.4915098669114273,
1068
+ "eval_accuracy": 0.9840196424064407,
1069
+ "eval_f1": 0.9677403990141918,
1070
+ "eval_loss": 0.04730767011642456,
1071
+ "eval_precision": 0.9666379623287346,
1072
+ "eval_recall": 0.9698169810038056,
1073
+ "eval_runtime": 119.877,
1074
+ "eval_samples_per_second": 166.17,
1075
+ "eval_steps_per_second": 10.386,
1076
+ "step": 6500
1077
+ },
1078
+ {
1079
+ "epoch": 1.502983019733823,
1080
+ "grad_norm": 0.24766087532043457,
1081
+ "learning_rate": 0.00013187682570593964,
1082
+ "loss": 0.0433,
1083
+ "step": 6550
1084
+ },
1085
+ {
1086
+ "epoch": 1.5144561725562184,
1087
+ "grad_norm": 0.28402864933013916,
1088
+ "learning_rate": 0.00012883398247322297,
1089
+ "loss": 0.0451,
1090
+ "step": 6600
1091
+ },
1092
+ {
1093
+ "epoch": 1.525929325378614,
1094
+ "grad_norm": 0.23255027830600739,
1095
+ "learning_rate": 0.00012579113924050635,
1096
+ "loss": 0.0494,
1097
+ "step": 6650
1098
+ },
1099
+ {
1100
+ "epoch": 1.5374024782010096,
1101
+ "grad_norm": 0.2084839642047882,
1102
+ "learning_rate": 0.00012274829600778967,
1103
+ "loss": 0.0524,
1104
+ "step": 6700
1105
+ },
1106
+ {
1107
+ "epoch": 1.5488756310234053,
1108
+ "grad_norm": 0.2631557285785675,
1109
+ "learning_rate": 0.00011970545277507303,
1110
+ "loss": 0.0447,
1111
+ "step": 6750
1112
+ },
1113
+ {
1114
+ "epoch": 1.5603487838458008,
1115
+ "grad_norm": 0.203273743391037,
1116
+ "learning_rate": 0.00011666260954235638,
1117
+ "loss": 0.046,
1118
+ "step": 6800
1119
+ },
1120
+ {
1121
+ "epoch": 1.5718219366681965,
1122
+ "grad_norm": 0.17683915793895721,
1123
+ "learning_rate": 0.00011361976630963972,
1124
+ "loss": 0.0488,
1125
+ "step": 6850
1126
+ },
1127
+ {
1128
+ "epoch": 1.583295089490592,
1129
+ "grad_norm": 0.22857971489429474,
1130
+ "learning_rate": 0.00011057692307692308,
1131
+ "loss": 0.047,
1132
+ "step": 6900
1133
+ },
1134
+ {
1135
+ "epoch": 1.5947682423129876,
1136
+ "grad_norm": 0.13033239543437958,
1137
+ "learning_rate": 0.00010753407984420643,
1138
+ "loss": 0.0477,
1139
+ "step": 6950
1140
+ },
1141
+ {
1142
+ "epoch": 1.6062413951353833,
1143
+ "grad_norm": 0.1830282211303711,
1144
+ "learning_rate": 0.00010449123661148977,
1145
+ "loss": 0.0455,
1146
+ "step": 7000
1147
+ },
1148
+ {
1149
+ "epoch": 1.6062413951353833,
1150
+ "eval_accuracy": 0.9839478813613316,
1151
+ "eval_f1": 0.9673812546821595,
1152
+ "eval_loss": 0.04686596244573593,
1153
+ "eval_precision": 0.9634884038843466,
1154
+ "eval_recall": 0.9731322385654713,
1155
+ "eval_runtime": 121.2935,
1156
+ "eval_samples_per_second": 164.23,
1157
+ "eval_steps_per_second": 10.264,
1158
+ "step": 7000
1159
+ },
1160
+ {
1161
+ "epoch": 1.6177145479577788,
1162
+ "grad_norm": 0.262114942073822,
1163
+ "learning_rate": 0.00010144839337877313,
1164
+ "loss": 0.0491,
1165
+ "step": 7050
1166
+ },
1167
+ {
1168
+ "epoch": 1.6291877007801743,
1169
+ "grad_norm": 0.2282840460538864,
1170
+ "learning_rate": 9.840555014605648e-05,
1171
+ "loss": 0.0478,
1172
+ "step": 7100
1173
+ },
1174
+ {
1175
+ "epoch": 1.64066085360257,
1176
+ "grad_norm": 0.3352207839488983,
1177
+ "learning_rate": 9.536270691333982e-05,
1178
+ "loss": 0.047,
1179
+ "step": 7150
1180
+ },
1181
+ {
1182
+ "epoch": 1.6521340064249657,
1183
+ "grad_norm": 0.21367865800857544,
1184
+ "learning_rate": 9.231986368062318e-05,
1185
+ "loss": 0.0438,
1186
+ "step": 7200
1187
+ },
1188
+ {
1189
+ "epoch": 1.6636071592473611,
1190
+ "grad_norm": 0.29630246758461,
1191
+ "learning_rate": 8.927702044790653e-05,
1192
+ "loss": 0.0476,
1193
+ "step": 7250
1194
+ },
1195
+ {
1196
+ "epoch": 1.6750803120697566,
1197
+ "grad_norm": 0.18861912190914154,
1198
+ "learning_rate": 8.623417721518987e-05,
1199
+ "loss": 0.0404,
1200
+ "step": 7300
1201
+ },
1202
+ {
1203
+ "epoch": 1.6865534648921523,
1204
+ "grad_norm": 0.24099300801753998,
1205
+ "learning_rate": 8.319133398247323e-05,
1206
+ "loss": 0.0438,
1207
+ "step": 7350
1208
+ },
1209
+ {
1210
+ "epoch": 1.698026617714548,
1211
+ "grad_norm": 0.4395439326763153,
1212
+ "learning_rate": 8.014849074975658e-05,
1213
+ "loss": 0.0434,
1214
+ "step": 7400
1215
+ },
1216
+ {
1217
+ "epoch": 1.7094997705369437,
1218
+ "grad_norm": 0.30208903551101685,
1219
+ "learning_rate": 7.710564751703992e-05,
1220
+ "loss": 0.0459,
1221
+ "step": 7450
1222
+ },
1223
+ {
1224
+ "epoch": 1.7209729233593392,
1225
+ "grad_norm": 0.2277510166168213,
1226
+ "learning_rate": 7.406280428432327e-05,
1227
+ "loss": 0.0445,
1228
+ "step": 7500
1229
+ },
1230
+ {
1231
+ "epoch": 1.7209729233593392,
1232
+ "eval_accuracy": 0.9839078650776103,
1233
+ "eval_f1": 0.9673493479575279,
1234
+ "eval_loss": 0.04653547704219818,
1235
+ "eval_precision": 0.9639073876576003,
1236
+ "eval_recall": 0.9731134347485857,
1237
+ "eval_runtime": 120.0655,
1238
+ "eval_samples_per_second": 165.909,
1239
+ "eval_steps_per_second": 10.369,
1240
+ "step": 7500
1241
+ },
1242
+ {
1243
+ "epoch": 1.7324460761817346,
1244
+ "grad_norm": 0.26645800471305847,
1245
+ "learning_rate": 7.101996105160661e-05,
1246
+ "loss": 0.0487,
1247
+ "step": 7550
1248
+ },
1249
+ {
1250
+ "epoch": 1.7439192290041303,
1251
+ "grad_norm": 0.254226416349411,
1252
+ "learning_rate": 6.797711781888997e-05,
1253
+ "loss": 0.0476,
1254
+ "step": 7600
1255
+ },
1256
+ {
1257
+ "epoch": 1.755392381826526,
1258
+ "grad_norm": 0.35157519578933716,
1259
+ "learning_rate": 6.493427458617332e-05,
1260
+ "loss": 0.047,
1261
+ "step": 7650
1262
+ },
1263
+ {
1264
+ "epoch": 1.7668655346489215,
1265
+ "grad_norm": 0.28356507420539856,
1266
+ "learning_rate": 6.189143135345668e-05,
1267
+ "loss": 0.0453,
1268
+ "step": 7700
1269
+ },
1270
+ {
1271
+ "epoch": 1.778338687471317,
1272
+ "grad_norm": 0.24292881786823273,
1273
+ "learning_rate": 5.8848588120740025e-05,
1274
+ "loss": 0.043,
1275
+ "step": 7750
1276
+ },
1277
+ {
1278
+ "epoch": 1.7898118402937127,
1279
+ "grad_norm": 0.23205772042274475,
1280
+ "learning_rate": 5.5805744888023366e-05,
1281
+ "loss": 0.047,
1282
+ "step": 7800
1283
+ },
1284
+ {
1285
+ "epoch": 1.8012849931161083,
1286
+ "grad_norm": 0.22511674463748932,
1287
+ "learning_rate": 5.276290165530672e-05,
1288
+ "loss": 0.0485,
1289
+ "step": 7850
1290
+ },
1291
+ {
1292
+ "epoch": 1.812758145938504,
1293
+ "grad_norm": 0.11639175564050674,
1294
+ "learning_rate": 4.9720058422590074e-05,
1295
+ "loss": 0.0468,
1296
+ "step": 7900
1297
+ },
1298
+ {
1299
+ "epoch": 1.8242312987608995,
1300
+ "grad_norm": 0.3817405104637146,
1301
+ "learning_rate": 4.6677215189873415e-05,
1302
+ "loss": 0.0436,
1303
+ "step": 7950
1304
+ },
1305
+ {
1306
+ "epoch": 1.835704451583295,
1307
+ "grad_norm": 0.23685210943222046,
1308
+ "learning_rate": 4.363437195715677e-05,
1309
+ "loss": 0.0485,
1310
+ "step": 8000
1311
+ },
1312
+ {
1313
+ "epoch": 1.835704451583295,
1314
+ "eval_accuracy": 0.9847846464449556,
1315
+ "eval_f1": 0.9692734951155788,
1316
+ "eval_loss": 0.044191647320985794,
1317
+ "eval_precision": 0.9682748217756245,
1318
+ "eval_recall": 0.9715440392623697,
1319
+ "eval_runtime": 119.9631,
1320
+ "eval_samples_per_second": 166.051,
1321
+ "eval_steps_per_second": 10.378,
1322
+ "step": 8000
1323
+ }
1324
+ ],
1325
+ "logging_steps": 50,
1326
+ "max_steps": 8716,
1327
+ "num_input_tokens_seen": 0,
1328
+ "num_train_epochs": 2,
1329
+ "save_steps": 1000,
1330
+ "stateful_callbacks": {
1331
+ "TrainerControl": {
1332
+ "args": {
1333
+ "should_epoch_stop": false,
1334
+ "should_evaluate": false,
1335
+ "should_log": false,
1336
+ "should_save": true,
1337
+ "should_training_stop": false
1338
+ },
1339
+ "attributes": {}
1340
+ }
1341
+ },
1342
+ "total_flos": 1.9995964607635416e+16,
1343
+ "train_batch_size": 16,
1344
+ "trial_name": null,
1345
+ "trial_params": null
1346
+ }
checkpoint-8000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c25f499fd0637dd40aacba2ee37a71fbf01438bc7cbb57bc752e6d4140572a35
3
+ size 5841
checkpoint-8716/README.md ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: EvanD/xlm-roberta-base-romanian-ner-ronec
3
+ library_name: peft
4
+ tags:
5
+ - base_model:adapter:EvanD/xlm-roberta-base-romanian-ner-ronec
6
+ - lora
7
+ - transformers
8
+ ---
9
+
10
+ # Model Card for Model ID
11
+
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
+
14
+
15
+
16
+ ## Model Details
17
+
18
+ ### Model Description
19
+
20
+ <!-- Provide a longer summary of what this model is. -->
21
+
22
+
23
+
24
+ - **Developed by:** [More Information Needed]
25
+ - **Funded by [optional]:** [More Information Needed]
26
+ - **Shared by [optional]:** [More Information Needed]
27
+ - **Model type:** [More Information Needed]
28
+ - **Language(s) (NLP):** [More Information Needed]
29
+ - **License:** [More Information Needed]
30
+ - **Finetuned from model [optional]:** [More Information Needed]
31
+
32
+ ### Model Sources [optional]
33
+
34
+ <!-- Provide the basic links for the model. -->
35
+
36
+ - **Repository:** [More Information Needed]
37
+ - **Paper [optional]:** [More Information Needed]
38
+ - **Demo [optional]:** [More Information Needed]
39
+
40
+ ## Uses
41
+
42
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
+
44
+ ### Direct Use
45
+
46
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
+
48
+ [More Information Needed]
49
+
50
+ ### Downstream Use [optional]
51
+
52
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
+
54
+ [More Information Needed]
55
+
56
+ ### Out-of-Scope Use
57
+
58
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
+
60
+ [More Information Needed]
61
+
62
+ ## Bias, Risks, and Limitations
63
+
64
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
+
66
+ [More Information Needed]
67
+
68
+ ### Recommendations
69
+
70
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
+
72
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
+
74
+ ## How to Get Started with the Model
75
+
76
+ Use the code below to get started with the model.
77
+
78
+ [More Information Needed]
79
+
80
+ ## Training Details
81
+
82
+ ### Training Data
83
+
84
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
+
86
+ [More Information Needed]
87
+
88
+ ### Training Procedure
89
+
90
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
+
92
+ #### Preprocessing [optional]
93
+
94
+ [More Information Needed]
95
+
96
+
97
+ #### Training Hyperparameters
98
+
99
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
+
101
+ #### Speeds, Sizes, Times [optional]
102
+
103
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
+
105
+ [More Information Needed]
106
+
107
+ ## Evaluation
108
+
109
+ <!-- This section describes the evaluation protocols and provides the results. -->
110
+
111
+ ### Testing Data, Factors & Metrics
112
+
113
+ #### Testing Data
114
+
115
+ <!-- This should link to a Dataset Card if possible. -->
116
+
117
+ [More Information Needed]
118
+
119
+ #### Factors
120
+
121
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
+
123
+ [More Information Needed]
124
+
125
+ #### Metrics
126
+
127
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
+
129
+ [More Information Needed]
130
+
131
+ ### Results
132
+
133
+ [More Information Needed]
134
+
135
+ #### Summary
136
+
137
+
138
+
139
+ ## Model Examination [optional]
140
+
141
+ <!-- Relevant interpretability work for the model goes here -->
142
+
143
+ [More Information Needed]
144
+
145
+ ## Environmental Impact
146
+
147
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
+
149
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
+
151
+ - **Hardware Type:** [More Information Needed]
152
+ - **Hours used:** [More Information Needed]
153
+ - **Cloud Provider:** [More Information Needed]
154
+ - **Compute Region:** [More Information Needed]
155
+ - **Carbon Emitted:** [More Information Needed]
156
+
157
+ ## Technical Specifications [optional]
158
+
159
+ ### Model Architecture and Objective
160
+
161
+ [More Information Needed]
162
+
163
+ ### Compute Infrastructure
164
+
165
+ [More Information Needed]
166
+
167
+ #### Hardware
168
+
169
+ [More Information Needed]
170
+
171
+ #### Software
172
+
173
+ [More Information Needed]
174
+
175
+ ## Citation [optional]
176
+
177
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
+
179
+ **BibTeX:**
180
+
181
+ [More Information Needed]
182
+
183
+ **APA:**
184
+
185
+ [More Information Needed]
186
+
187
+ ## Glossary [optional]
188
+
189
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
+
191
+ [More Information Needed]
192
+
193
+ ## More Information [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Authors [optional]
198
+
199
+ [More Information Needed]
200
+
201
+ ## Model Card Contact
202
+
203
+ [More Information Needed]
204
+ ### Framework versions
205
+
206
+ - PEFT 0.17.1
checkpoint-8716/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "EvanD/xlm-roberta-base-romanian-ner-ronec",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "classifier",
23
+ "score"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "qalora_group_size": 16,
27
+ "r": 16,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "dense",
32
+ "query",
33
+ "value",
34
+ "key"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "TOKEN_CLS",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-8716/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aa903eab75c938a4c8495d5d2b7bb8390f6f8ea49fb0c40f27161165064bab1
3
+ size 10899068
checkpoint-8716/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06400082ba0869f4235df57463a777e00331795fad4823bb94770ae8a016db0b
3
+ size 21881739
checkpoint-8716/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:658f87d3c9d6d7e83e7fe1e6c105d7d265e1bd84f0ef76d24771b35bc48a2da4
3
+ size 14645
checkpoint-8716/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ae2b9cfdc80cf085e07da3a22852ba2187f065729233222b1397cc6fe83f7fa
3
+ size 1465
checkpoint-8716/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-8716/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8373f9cd3d27591e1924426bcc1c8799bc5a9affc4fc857982c5d66668dd1f41
3
+ size 17082832
checkpoint-8716/tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "stride": 0,
55
+ "tokenizer_class": "XLMRobertaTokenizer",
56
+ "truncation_side": "right",
57
+ "truncation_strategy": "longest_first",
58
+ "unk_token": "<unk>"
59
+ }
checkpoint-8716/trainer_state.json ADDED
@@ -0,0 +1,1456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 8500,
3
+ "best_metric": 0.9694837693189375,
4
+ "best_model_checkpoint": "./models/financial_adapter_20250914_060658/checkpoint-8000",
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 8716,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.011473152822395595,
14
+ "grad_norm": 6.211507797241211,
15
+ "learning_rate": 4.9000000000000005e-05,
16
+ "loss": 3.7315,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.02294630564479119,
21
+ "grad_norm": 0.805833637714386,
22
+ "learning_rate": 9.900000000000001e-05,
23
+ "loss": 1.2821,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.03441945846718678,
28
+ "grad_norm": 0.7927971482276917,
29
+ "learning_rate": 0.000149,
30
+ "loss": 0.644,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.04589261128958238,
35
+ "grad_norm": 0.95986407995224,
36
+ "learning_rate": 0.000199,
37
+ "loss": 0.3733,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.05736576411197797,
42
+ "grad_norm": 0.7364535927772522,
43
+ "learning_rate": 0.000249,
44
+ "loss": 0.2499,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.06883891693437356,
49
+ "grad_norm": 0.8872820734977722,
50
+ "learning_rate": 0.000299,
51
+ "loss": 0.1937,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.08031206975676916,
56
+ "grad_norm": 0.5113154053688049,
57
+ "learning_rate": 0.00034899999999999997,
58
+ "loss": 0.1646,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.09178522257916476,
63
+ "grad_norm": 0.7045756578445435,
64
+ "learning_rate": 0.00039900000000000005,
65
+ "loss": 0.1466,
66
+ "step": 400
67
+ },
68
+ {
69
+ "epoch": 0.10325837540156035,
70
+ "grad_norm": 0.5810624957084656,
71
+ "learning_rate": 0.000449,
72
+ "loss": 0.1314,
73
+ "step": 450
74
+ },
75
+ {
76
+ "epoch": 0.11473152822395594,
77
+ "grad_norm": 0.5461702346801758,
78
+ "learning_rate": 0.000499,
79
+ "loss": 0.1276,
80
+ "step": 500
81
+ },
82
+ {
83
+ "epoch": 0.11473152822395594,
84
+ "eval_accuracy": 0.970071396651017,
85
+ "eval_f1": 0.931817690038444,
86
+ "eval_loss": 0.1108999103307724,
87
+ "eval_precision": 0.9314176027125088,
88
+ "eval_recall": 0.9343327320933421,
89
+ "eval_runtime": 138.5938,
90
+ "eval_samples_per_second": 143.729,
91
+ "eval_steps_per_second": 8.983,
92
+ "step": 500
93
+ },
94
+ {
95
+ "epoch": 0.12620468104635155,
96
+ "grad_norm": 0.5111148357391357,
97
+ "learning_rate": 0.0004970180136319377,
98
+ "loss": 0.1157,
99
+ "step": 550
100
+ },
101
+ {
102
+ "epoch": 0.13767783386874713,
103
+ "grad_norm": 0.5293119549751282,
104
+ "learning_rate": 0.000493975170399221,
105
+ "loss": 0.1091,
106
+ "step": 600
107
+ },
108
+ {
109
+ "epoch": 0.14915098669114274,
110
+ "grad_norm": 0.5645154714584351,
111
+ "learning_rate": 0.0004909323271665044,
112
+ "loss": 0.1054,
113
+ "step": 650
114
+ },
115
+ {
116
+ "epoch": 0.16062413951353832,
117
+ "grad_norm": 0.3088572025299072,
118
+ "learning_rate": 0.0004878894839337877,
119
+ "loss": 0.1017,
120
+ "step": 700
121
+ },
122
+ {
123
+ "epoch": 0.1720972923359339,
124
+ "grad_norm": 0.3965695798397064,
125
+ "learning_rate": 0.0004848466407010711,
126
+ "loss": 0.0881,
127
+ "step": 750
128
+ },
129
+ {
130
+ "epoch": 0.18357044515832951,
131
+ "grad_norm": 0.44487106800079346,
132
+ "learning_rate": 0.0004818037974683545,
133
+ "loss": 0.0908,
134
+ "step": 800
135
+ },
136
+ {
137
+ "epoch": 0.1950435979807251,
138
+ "grad_norm": 0.5573059320449829,
139
+ "learning_rate": 0.00047876095423563783,
140
+ "loss": 0.0923,
141
+ "step": 850
142
+ },
143
+ {
144
+ "epoch": 0.2065167508031207,
145
+ "grad_norm": 0.242904931306839,
146
+ "learning_rate": 0.00047571811100292113,
147
+ "loss": 0.0893,
148
+ "step": 900
149
+ },
150
+ {
151
+ "epoch": 0.2179899036255163,
152
+ "grad_norm": 0.4724123477935791,
153
+ "learning_rate": 0.0004726752677702045,
154
+ "loss": 0.0878,
155
+ "step": 950
156
+ },
157
+ {
158
+ "epoch": 0.22946305644791187,
159
+ "grad_norm": 0.32161369919776917,
160
+ "learning_rate": 0.00046963242453748784,
161
+ "loss": 0.0816,
162
+ "step": 1000
163
+ },
164
+ {
165
+ "epoch": 0.22946305644791187,
166
+ "eval_accuracy": 0.977059938804148,
167
+ "eval_f1": 0.9485042354538835,
168
+ "eval_loss": 0.07678939402103424,
169
+ "eval_precision": 0.948923113654349,
170
+ "eval_recall": 0.9476371557635869,
171
+ "eval_runtime": 118.5842,
172
+ "eval_samples_per_second": 167.982,
173
+ "eval_steps_per_second": 10.499,
174
+ "step": 1000
175
+ },
176
+ {
177
+ "epoch": 0.24093620927030748,
178
+ "grad_norm": 1.1815085411071777,
179
+ "learning_rate": 0.0004665895813047712,
180
+ "loss": 0.0837,
181
+ "step": 1050
182
+ },
183
+ {
184
+ "epoch": 0.2524093620927031,
185
+ "grad_norm": 0.26893287897109985,
186
+ "learning_rate": 0.00046354673807205455,
187
+ "loss": 0.0816,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 0.2638825149150987,
192
+ "grad_norm": 0.31159281730651855,
193
+ "learning_rate": 0.0004605038948393379,
194
+ "loss": 0.082,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 0.27535566773749426,
199
+ "grad_norm": 0.3065606951713562,
200
+ "learning_rate": 0.0004574610516066212,
201
+ "loss": 0.0742,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 0.28682882055988984,
206
+ "grad_norm": 0.2774142324924469,
207
+ "learning_rate": 0.00045441820837390456,
208
+ "loss": 0.0792,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 0.2983019733822855,
213
+ "grad_norm": 0.23560093343257904,
214
+ "learning_rate": 0.0004513753651411879,
215
+ "loss": 0.0719,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 0.30977512620468106,
220
+ "grad_norm": 0.29983004927635193,
221
+ "learning_rate": 0.0004483325219084713,
222
+ "loss": 0.0722,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 0.32124827902707664,
227
+ "grad_norm": 0.26415759325027466,
228
+ "learning_rate": 0.00044528967867575467,
229
+ "loss": 0.0724,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 0.3327214318494722,
234
+ "grad_norm": 0.34820911288261414,
235
+ "learning_rate": 0.000442246835443038,
236
+ "loss": 0.0756,
237
+ "step": 1450
238
+ },
239
+ {
240
+ "epoch": 0.3441945846718678,
241
+ "grad_norm": 0.35296013951301575,
242
+ "learning_rate": 0.0004392039922103213,
243
+ "loss": 0.0676,
244
+ "step": 1500
245
+ },
246
+ {
247
+ "epoch": 0.3441945846718678,
248
+ "eval_accuracy": 0.9795261937874608,
249
+ "eval_f1": 0.9560398155032158,
250
+ "eval_loss": 0.06693130731582642,
251
+ "eval_precision": 0.9546461779958985,
252
+ "eval_recall": 0.9579011468881853,
253
+ "eval_runtime": 122.2351,
254
+ "eval_samples_per_second": 162.965,
255
+ "eval_steps_per_second": 10.185,
256
+ "step": 1500
257
+ },
258
+ {
259
+ "epoch": 0.35566773749426345,
260
+ "grad_norm": 0.4301516115665436,
261
+ "learning_rate": 0.0004361611489776047,
262
+ "loss": 0.0719,
263
+ "step": 1550
264
+ },
265
+ {
266
+ "epoch": 0.36714089031665903,
267
+ "grad_norm": 0.3780372440814972,
268
+ "learning_rate": 0.00043311830574488803,
269
+ "loss": 0.072,
270
+ "step": 1600
271
+ },
272
+ {
273
+ "epoch": 0.3786140431390546,
274
+ "grad_norm": 0.3334237337112427,
275
+ "learning_rate": 0.0004300754625121714,
276
+ "loss": 0.0664,
277
+ "step": 1650
278
+ },
279
+ {
280
+ "epoch": 0.3900871959614502,
281
+ "grad_norm": 0.21125715970993042,
282
+ "learning_rate": 0.00042703261927945474,
283
+ "loss": 0.0708,
284
+ "step": 1700
285
+ },
286
+ {
287
+ "epoch": 0.4015603487838458,
288
+ "grad_norm": 0.36593177914619446,
289
+ "learning_rate": 0.0004239897760467381,
290
+ "loss": 0.0674,
291
+ "step": 1750
292
+ },
293
+ {
294
+ "epoch": 0.4130335016062414,
295
+ "grad_norm": 0.5742707252502441,
296
+ "learning_rate": 0.0004209469328140214,
297
+ "loss": 0.0709,
298
+ "step": 1800
299
+ },
300
+ {
301
+ "epoch": 0.424506654428637,
302
+ "grad_norm": 0.43670088052749634,
303
+ "learning_rate": 0.00041790408958130475,
304
+ "loss": 0.0626,
305
+ "step": 1850
306
+ },
307
+ {
308
+ "epoch": 0.4359798072510326,
309
+ "grad_norm": 0.3064088225364685,
310
+ "learning_rate": 0.0004148612463485881,
311
+ "loss": 0.067,
312
+ "step": 1900
313
+ },
314
+ {
315
+ "epoch": 0.44745296007342816,
316
+ "grad_norm": 0.26380443572998047,
317
+ "learning_rate": 0.0004118184031158715,
318
+ "loss": 0.0673,
319
+ "step": 1950
320
+ },
321
+ {
322
+ "epoch": 0.45892611289582375,
323
+ "grad_norm": 0.2760469913482666,
324
+ "learning_rate": 0.00040877555988315487,
325
+ "loss": 0.0686,
326
+ "step": 2000
327
+ },
328
+ {
329
+ "epoch": 0.45892611289582375,
330
+ "eval_accuracy": 0.9792398202709974,
331
+ "eval_f1": 0.9566771424147363,
332
+ "eval_loss": 0.06424970924854279,
333
+ "eval_precision": 0.9518499916341474,
334
+ "eval_recall": 0.9651666524432667,
335
+ "eval_runtime": 119.1986,
336
+ "eval_samples_per_second": 167.116,
337
+ "eval_steps_per_second": 10.445,
338
+ "step": 2000
339
+ },
340
+ {
341
+ "epoch": 0.4703992657182194,
342
+ "grad_norm": 0.36512625217437744,
343
+ "learning_rate": 0.0004057327166504382,
344
+ "loss": 0.065,
345
+ "step": 2050
346
+ },
347
+ {
348
+ "epoch": 0.48187241854061497,
349
+ "grad_norm": 0.3270319402217865,
350
+ "learning_rate": 0.0004026898734177215,
351
+ "loss": 0.0663,
352
+ "step": 2100
353
+ },
354
+ {
355
+ "epoch": 0.49334557136301055,
356
+ "grad_norm": 0.2962779700756073,
357
+ "learning_rate": 0.0003996470301850049,
358
+ "loss": 0.0681,
359
+ "step": 2150
360
+ },
361
+ {
362
+ "epoch": 0.5048187241854062,
363
+ "grad_norm": 0.4675407409667969,
364
+ "learning_rate": 0.00039660418695228823,
365
+ "loss": 0.0715,
366
+ "step": 2200
367
+ },
368
+ {
369
+ "epoch": 0.5162918770078018,
370
+ "grad_norm": 0.27184540033340454,
371
+ "learning_rate": 0.0003935613437195716,
372
+ "loss": 0.066,
373
+ "step": 2250
374
+ },
375
+ {
376
+ "epoch": 0.5277650298301974,
377
+ "grad_norm": 0.3290219008922577,
378
+ "learning_rate": 0.00039051850048685494,
379
+ "loss": 0.0666,
380
+ "step": 2300
381
+ },
382
+ {
383
+ "epoch": 0.5392381826525929,
384
+ "grad_norm": 0.18070432543754578,
385
+ "learning_rate": 0.00038747565725413824,
386
+ "loss": 0.0626,
387
+ "step": 2350
388
+ },
389
+ {
390
+ "epoch": 0.5507113354749885,
391
+ "grad_norm": 0.27334141731262207,
392
+ "learning_rate": 0.0003844328140214216,
393
+ "loss": 0.0595,
394
+ "step": 2400
395
+ },
396
+ {
397
+ "epoch": 0.5621844882973841,
398
+ "grad_norm": 0.29450327157974243,
399
+ "learning_rate": 0.00038138997078870495,
400
+ "loss": 0.0655,
401
+ "step": 2450
402
+ },
403
+ {
404
+ "epoch": 0.5736576411197797,
405
+ "grad_norm": 0.49441081285476685,
406
+ "learning_rate": 0.0003783471275559883,
407
+ "loss": 0.0644,
408
+ "step": 2500
409
+ },
410
+ {
411
+ "epoch": 0.5736576411197797,
412
+ "eval_accuracy": 0.9802089297119565,
413
+ "eval_f1": 0.9567031119548932,
414
+ "eval_loss": 0.060597751289606094,
415
+ "eval_precision": 0.9516312084805371,
416
+ "eval_recall": 0.9679770998439283,
417
+ "eval_runtime": 122.2434,
418
+ "eval_samples_per_second": 162.954,
419
+ "eval_steps_per_second": 10.185,
420
+ "step": 2500
421
+ },
422
+ {
423
+ "epoch": 0.5851307939421753,
424
+ "grad_norm": 0.2936118543148041,
425
+ "learning_rate": 0.00037530428432327166,
426
+ "loss": 0.0726,
427
+ "step": 2550
428
+ },
429
+ {
430
+ "epoch": 0.596603946764571,
431
+ "grad_norm": 0.29937854409217834,
432
+ "learning_rate": 0.00037226144109055506,
433
+ "loss": 0.0646,
434
+ "step": 2600
435
+ },
436
+ {
437
+ "epoch": 0.6080770995869665,
438
+ "grad_norm": 0.2445821762084961,
439
+ "learning_rate": 0.00036921859785783836,
440
+ "loss": 0.0666,
441
+ "step": 2650
442
+ },
443
+ {
444
+ "epoch": 0.6195502524093621,
445
+ "grad_norm": 0.36757129430770874,
446
+ "learning_rate": 0.0003661757546251217,
447
+ "loss": 0.0773,
448
+ "step": 2700
449
+ },
450
+ {
451
+ "epoch": 0.6310234052317577,
452
+ "grad_norm": 0.16537484526634216,
453
+ "learning_rate": 0.0003631329113924051,
454
+ "loss": 0.0605,
455
+ "step": 2750
456
+ },
457
+ {
458
+ "epoch": 0.6424965580541533,
459
+ "grad_norm": 0.4437476396560669,
460
+ "learning_rate": 0.00036009006815968843,
461
+ "loss": 0.0641,
462
+ "step": 2800
463
+ },
464
+ {
465
+ "epoch": 0.6539697108765489,
466
+ "grad_norm": 0.29756319522857666,
467
+ "learning_rate": 0.0003570472249269718,
468
+ "loss": 0.0611,
469
+ "step": 2850
470
+ },
471
+ {
472
+ "epoch": 0.6654428636989445,
473
+ "grad_norm": 0.22879567742347717,
474
+ "learning_rate": 0.00035400438169425514,
475
+ "loss": 0.0591,
476
+ "step": 2900
477
+ },
478
+ {
479
+ "epoch": 0.67691601652134,
480
+ "grad_norm": 0.4005909264087677,
481
+ "learning_rate": 0.00035096153846153844,
482
+ "loss": 0.0648,
483
+ "step": 2950
484
+ },
485
+ {
486
+ "epoch": 0.6883891693437356,
487
+ "grad_norm": 0.4542585611343384,
488
+ "learning_rate": 0.0003479186952288218,
489
+ "loss": 0.0574,
490
+ "step": 3000
491
+ },
492
+ {
493
+ "epoch": 0.6883891693437356,
494
+ "eval_accuracy": 0.9813785676808373,
495
+ "eval_f1": 0.9602148371355144,
496
+ "eval_loss": 0.056131936609745026,
497
+ "eval_precision": 0.9611373242869105,
498
+ "eval_recall": 0.9617183217159495,
499
+ "eval_runtime": 119.7516,
500
+ "eval_samples_per_second": 166.344,
501
+ "eval_steps_per_second": 10.397,
502
+ "step": 3000
503
+ },
504
+ {
505
+ "epoch": 0.6998623221661312,
506
+ "grad_norm": 0.16639067232608795,
507
+ "learning_rate": 0.00034487585199610514,
508
+ "loss": 0.0583,
509
+ "step": 3050
510
+ },
511
+ {
512
+ "epoch": 0.7113354749885269,
513
+ "grad_norm": 0.24682307243347168,
514
+ "learning_rate": 0.0003418330087633885,
515
+ "loss": 0.0599,
516
+ "step": 3100
517
+ },
518
+ {
519
+ "epoch": 0.7228086278109225,
520
+ "grad_norm": 0.8064585328102112,
521
+ "learning_rate": 0.00033879016553067185,
522
+ "loss": 0.0572,
523
+ "step": 3150
524
+ },
525
+ {
526
+ "epoch": 0.7342817806333181,
527
+ "grad_norm": 0.19956223666667938,
528
+ "learning_rate": 0.00033574732229795526,
529
+ "loss": 0.0582,
530
+ "step": 3200
531
+ },
532
+ {
533
+ "epoch": 0.7457549334557136,
534
+ "grad_norm": 0.24573862552642822,
535
+ "learning_rate": 0.00033270447906523856,
536
+ "loss": 0.0641,
537
+ "step": 3250
538
+ },
539
+ {
540
+ "epoch": 0.7572280862781092,
541
+ "grad_norm": 0.2404450923204422,
542
+ "learning_rate": 0.0003296616358325219,
543
+ "loss": 0.0662,
544
+ "step": 3300
545
+ },
546
+ {
547
+ "epoch": 0.7687012391005048,
548
+ "grad_norm": 0.2951129376888275,
549
+ "learning_rate": 0.00032661879259980527,
550
+ "loss": 0.0593,
551
+ "step": 3350
552
+ },
553
+ {
554
+ "epoch": 0.7801743919229004,
555
+ "grad_norm": 0.27735939621925354,
556
+ "learning_rate": 0.0003235759493670886,
557
+ "loss": 0.0551,
558
+ "step": 3400
559
+ },
560
+ {
561
+ "epoch": 0.791647544745296,
562
+ "grad_norm": 0.22863982617855072,
563
+ "learning_rate": 0.000320533106134372,
564
+ "loss": 0.0528,
565
+ "step": 3450
566
+ },
567
+ {
568
+ "epoch": 0.8031206975676916,
569
+ "grad_norm": 0.15240560472011566,
570
+ "learning_rate": 0.00031749026290165533,
571
+ "loss": 0.0607,
572
+ "step": 3500
573
+ },
574
+ {
575
+ "epoch": 0.8031206975676916,
576
+ "eval_accuracy": 0.9817161352139049,
577
+ "eval_f1": 0.9618400997245777,
578
+ "eval_loss": 0.05566277727484703,
579
+ "eval_precision": 0.9594136950612108,
580
+ "eval_recall": 0.9670788559757807,
581
+ "eval_runtime": 119.7185,
582
+ "eval_samples_per_second": 166.39,
583
+ "eval_steps_per_second": 10.399,
584
+ "step": 3500
585
+ },
586
+ {
587
+ "epoch": 0.8145938503900872,
588
+ "grad_norm": 0.22435520589351654,
589
+ "learning_rate": 0.00031444741966893863,
590
+ "loss": 0.0619,
591
+ "step": 3550
592
+ },
593
+ {
594
+ "epoch": 0.8260670032124828,
595
+ "grad_norm": 0.23223020136356354,
596
+ "learning_rate": 0.000311404576436222,
597
+ "loss": 0.0563,
598
+ "step": 3600
599
+ },
600
+ {
601
+ "epoch": 0.8375401560348784,
602
+ "grad_norm": 0.3050450384616852,
603
+ "learning_rate": 0.00030836173320350534,
604
+ "loss": 0.0581,
605
+ "step": 3650
606
+ },
607
+ {
608
+ "epoch": 0.849013308857274,
609
+ "grad_norm": 0.2995171546936035,
610
+ "learning_rate": 0.0003053188899707887,
611
+ "loss": 0.0539,
612
+ "step": 3700
613
+ },
614
+ {
615
+ "epoch": 0.8604864616796696,
616
+ "grad_norm": 0.25285205245018005,
617
+ "learning_rate": 0.00030227604673807205,
618
+ "loss": 0.0597,
619
+ "step": 3750
620
+ },
621
+ {
622
+ "epoch": 0.8719596145020652,
623
+ "grad_norm": 0.4498445689678192,
624
+ "learning_rate": 0.00029923320350535546,
625
+ "loss": 0.0582,
626
+ "step": 3800
627
+ },
628
+ {
629
+ "epoch": 0.8834327673244607,
630
+ "grad_norm": 0.24611692130565643,
631
+ "learning_rate": 0.00029619036027263876,
632
+ "loss": 0.0568,
633
+ "step": 3850
634
+ },
635
+ {
636
+ "epoch": 0.8949059201468563,
637
+ "grad_norm": 0.3124069571495056,
638
+ "learning_rate": 0.0002931475170399221,
639
+ "loss": 0.0591,
640
+ "step": 3900
641
+ },
642
+ {
643
+ "epoch": 0.9063790729692519,
644
+ "grad_norm": 0.2108747363090515,
645
+ "learning_rate": 0.00029010467380720547,
646
+ "loss": 0.0548,
647
+ "step": 3950
648
+ },
649
+ {
650
+ "epoch": 0.9178522257916475,
651
+ "grad_norm": 0.22898589074611664,
652
+ "learning_rate": 0.0002870618305744888,
653
+ "loss": 0.0603,
654
+ "step": 4000
655
+ },
656
+ {
657
+ "epoch": 0.9178522257916475,
658
+ "eval_accuracy": 0.9814983929773434,
659
+ "eval_f1": 0.9609698369421166,
660
+ "eval_loss": 0.05435480922460556,
661
+ "eval_precision": 0.9558103401819693,
662
+ "eval_recall": 0.9701771464195363,
663
+ "eval_runtime": 119.6005,
664
+ "eval_samples_per_second": 166.554,
665
+ "eval_steps_per_second": 10.41,
666
+ "step": 4000
667
+ },
668
+ {
669
+ "epoch": 0.9293253786140432,
670
+ "grad_norm": 0.27442702651023865,
671
+ "learning_rate": 0.0002840189873417722,
672
+ "loss": 0.0596,
673
+ "step": 4050
674
+ },
675
+ {
676
+ "epoch": 0.9407985314364388,
677
+ "grad_norm": 0.1897002011537552,
678
+ "learning_rate": 0.00028097614410905553,
679
+ "loss": 0.0575,
680
+ "step": 4100
681
+ },
682
+ {
683
+ "epoch": 0.9522716842588343,
684
+ "grad_norm": 0.31244686245918274,
685
+ "learning_rate": 0.00027793330087633883,
686
+ "loss": 0.0569,
687
+ "step": 4150
688
+ },
689
+ {
690
+ "epoch": 0.9637448370812299,
691
+ "grad_norm": 0.23371103405952454,
692
+ "learning_rate": 0.0002748904576436222,
693
+ "loss": 0.0582,
694
+ "step": 4200
695
+ },
696
+ {
697
+ "epoch": 0.9752179899036255,
698
+ "grad_norm": 0.2830590307712555,
699
+ "learning_rate": 0.00027184761441090554,
700
+ "loss": 0.0551,
701
+ "step": 4250
702
+ },
703
+ {
704
+ "epoch": 0.9866911427260211,
705
+ "grad_norm": 0.17691777646541595,
706
+ "learning_rate": 0.0002688047711781889,
707
+ "loss": 0.0556,
708
+ "step": 4300
709
+ },
710
+ {
711
+ "epoch": 0.9981642955484167,
712
+ "grad_norm": 0.32038599252700806,
713
+ "learning_rate": 0.00026576192794547224,
714
+ "loss": 0.0524,
715
+ "step": 4350
716
+ },
717
+ {
718
+ "epoch": 1.0096374483708124,
719
+ "grad_norm": 0.1972804069519043,
720
+ "learning_rate": 0.00026271908471275565,
721
+ "loss": 0.0521,
722
+ "step": 4400
723
+ },
724
+ {
725
+ "epoch": 1.0211106011932078,
726
+ "grad_norm": 0.35761380195617676,
727
+ "learning_rate": 0.00025967624148003895,
728
+ "loss": 0.0572,
729
+ "step": 4450
730
+ },
731
+ {
732
+ "epoch": 1.0325837540156035,
733
+ "grad_norm": 0.285580039024353,
734
+ "learning_rate": 0.0002566333982473223,
735
+ "loss": 0.0487,
736
+ "step": 4500
737
+ },
738
+ {
739
+ "epoch": 1.0325837540156035,
740
+ "eval_accuracy": 0.9825631838117813,
741
+ "eval_f1": 0.9641975912207242,
742
+ "eval_loss": 0.05233108997344971,
743
+ "eval_precision": 0.9613379614792094,
744
+ "eval_recall": 0.9699254645627606,
745
+ "eval_runtime": 119.1944,
746
+ "eval_samples_per_second": 167.122,
747
+ "eval_steps_per_second": 10.445,
748
+ "step": 4500
749
+ },
750
+ {
751
+ "epoch": 1.044056906837999,
752
+ "grad_norm": 0.2022152990102768,
753
+ "learning_rate": 0.00025359055501460566,
754
+ "loss": 0.0539,
755
+ "step": 4550
756
+ },
757
+ {
758
+ "epoch": 1.0555300596603947,
759
+ "grad_norm": 0.29692327976226807,
760
+ "learning_rate": 0.000250547711781889,
761
+ "loss": 0.047,
762
+ "step": 4600
763
+ },
764
+ {
765
+ "epoch": 1.0670032124827902,
766
+ "grad_norm": 0.2476482093334198,
767
+ "learning_rate": 0.0002475048685491723,
768
+ "loss": 0.053,
769
+ "step": 4650
770
+ },
771
+ {
772
+ "epoch": 1.0784763653051859,
773
+ "grad_norm": 0.17114070057868958,
774
+ "learning_rate": 0.0002444620253164557,
775
+ "loss": 0.0519,
776
+ "step": 4700
777
+ },
778
+ {
779
+ "epoch": 1.0899495181275816,
780
+ "grad_norm": 0.11371100693941116,
781
+ "learning_rate": 0.00024141918208373905,
782
+ "loss": 0.0547,
783
+ "step": 4750
784
+ },
785
+ {
786
+ "epoch": 1.101422670949977,
787
+ "grad_norm": 0.25711262226104736,
788
+ "learning_rate": 0.00023837633885102238,
789
+ "loss": 0.0543,
790
+ "step": 4800
791
+ },
792
+ {
793
+ "epoch": 1.1128958237723727,
794
+ "grad_norm": 0.2982866168022156,
795
+ "learning_rate": 0.00023533349561830576,
796
+ "loss": 0.0561,
797
+ "step": 4850
798
+ },
799
+ {
800
+ "epoch": 1.1243689765947682,
801
+ "grad_norm": 0.3269876539707184,
802
+ "learning_rate": 0.00023229065238558911,
803
+ "loss": 0.0494,
804
+ "step": 4900
805
+ },
806
+ {
807
+ "epoch": 1.135842129417164,
808
+ "grad_norm": 0.26729336380958557,
809
+ "learning_rate": 0.00022924780915287244,
810
+ "loss": 0.047,
811
+ "step": 4950
812
+ },
813
+ {
814
+ "epoch": 1.1473152822395594,
815
+ "grad_norm": 0.39272695779800415,
816
+ "learning_rate": 0.0002262049659201558,
817
+ "loss": 0.0517,
818
+ "step": 5000
819
+ },
820
+ {
821
+ "epoch": 1.1473152822395594,
822
+ "eval_accuracy": 0.9833051617205572,
823
+ "eval_f1": 0.9649115475893709,
824
+ "eval_loss": 0.05118980631232262,
825
+ "eval_precision": 0.96238450457423,
826
+ "eval_recall": 0.9685961793536983,
827
+ "eval_runtime": 120.695,
828
+ "eval_samples_per_second": 165.044,
829
+ "eval_steps_per_second": 10.315,
830
+ "step": 5000
831
+ },
832
+ {
833
+ "epoch": 1.158788435061955,
834
+ "grad_norm": 0.2898092567920685,
835
+ "learning_rate": 0.00022316212268743915,
836
+ "loss": 0.0499,
837
+ "step": 5050
838
+ },
839
+ {
840
+ "epoch": 1.1702615878843505,
841
+ "grad_norm": 0.20259062945842743,
842
+ "learning_rate": 0.00022011927945472248,
843
+ "loss": 0.0506,
844
+ "step": 5100
845
+ },
846
+ {
847
+ "epoch": 1.1817347407067462,
848
+ "grad_norm": 0.26172712445259094,
849
+ "learning_rate": 0.00021707643622200586,
850
+ "loss": 0.0512,
851
+ "step": 5150
852
+ },
853
+ {
854
+ "epoch": 1.193207893529142,
855
+ "grad_norm": 0.26839691400527954,
856
+ "learning_rate": 0.0002140335929892892,
857
+ "loss": 0.0524,
858
+ "step": 5200
859
+ },
860
+ {
861
+ "epoch": 1.2046810463515374,
862
+ "grad_norm": 0.19788499176502228,
863
+ "learning_rate": 0.00021099074975657254,
864
+ "loss": 0.0532,
865
+ "step": 5250
866
+ },
867
+ {
868
+ "epoch": 1.216154199173933,
869
+ "grad_norm": 0.22159354388713837,
870
+ "learning_rate": 0.0002079479065238559,
871
+ "loss": 0.0539,
872
+ "step": 5300
873
+ },
874
+ {
875
+ "epoch": 1.2276273519963286,
876
+ "grad_norm": 0.274666428565979,
877
+ "learning_rate": 0.00020490506329113925,
878
+ "loss": 0.0533,
879
+ "step": 5350
880
+ },
881
+ {
882
+ "epoch": 1.2391005048187242,
883
+ "grad_norm": 0.2635292410850525,
884
+ "learning_rate": 0.00020186222005842257,
885
+ "loss": 0.0511,
886
+ "step": 5400
887
+ },
888
+ {
889
+ "epoch": 1.2505736576411197,
890
+ "grad_norm": 0.19532188773155212,
891
+ "learning_rate": 0.00019881937682570596,
892
+ "loss": 0.0493,
893
+ "step": 5450
894
+ },
895
+ {
896
+ "epoch": 1.2620468104635154,
897
+ "grad_norm": 0.17796900868415833,
898
+ "learning_rate": 0.0001957765335929893,
899
+ "loss": 0.049,
900
+ "step": 5500
901
+ },
902
+ {
903
+ "epoch": 1.2620468104635154,
904
+ "eval_accuracy": 0.9832237878251686,
905
+ "eval_f1": 0.9660702602061538,
906
+ "eval_loss": 0.05031489580869675,
907
+ "eval_precision": 0.9649079959020276,
908
+ "eval_recall": 0.9685498930352109,
909
+ "eval_runtime": 121.0196,
910
+ "eval_samples_per_second": 164.601,
911
+ "eval_steps_per_second": 10.288,
912
+ "step": 5500
913
+ },
914
+ {
915
+ "epoch": 1.2735199632859109,
916
+ "grad_norm": 0.2736414968967438,
917
+ "learning_rate": 0.00019273369036027264,
918
+ "loss": 0.0518,
919
+ "step": 5550
920
+ },
921
+ {
922
+ "epoch": 1.2849931161083066,
923
+ "grad_norm": 0.27350395917892456,
924
+ "learning_rate": 0.000189690847127556,
925
+ "loss": 0.0463,
926
+ "step": 5600
927
+ },
928
+ {
929
+ "epoch": 1.2964662689307023,
930
+ "grad_norm": 0.20141524076461792,
931
+ "learning_rate": 0.00018664800389483935,
932
+ "loss": 0.0531,
933
+ "step": 5650
934
+ },
935
+ {
936
+ "epoch": 1.3079394217530977,
937
+ "grad_norm": 0.2544547915458679,
938
+ "learning_rate": 0.00018360516066212267,
939
+ "loss": 0.0499,
940
+ "step": 5700
941
+ },
942
+ {
943
+ "epoch": 1.3194125745754932,
944
+ "grad_norm": 0.15668709576129913,
945
+ "learning_rate": 0.00018056231742940605,
946
+ "loss": 0.0489,
947
+ "step": 5750
948
+ },
949
+ {
950
+ "epoch": 1.330885727397889,
951
+ "grad_norm": 0.254363089799881,
952
+ "learning_rate": 0.0001775194741966894,
953
+ "loss": 0.0514,
954
+ "step": 5800
955
+ },
956
+ {
957
+ "epoch": 1.3423588802202846,
958
+ "grad_norm": 0.34548887610435486,
959
+ "learning_rate": 0.00017447663096397273,
960
+ "loss": 0.0535,
961
+ "step": 5850
962
+ },
963
+ {
964
+ "epoch": 1.35383203304268,
965
+ "grad_norm": 0.2949070334434509,
966
+ "learning_rate": 0.0001714337877312561,
967
+ "loss": 0.0483,
968
+ "step": 5900
969
+ },
970
+ {
971
+ "epoch": 1.3653051858650758,
972
+ "grad_norm": 0.18696388602256775,
973
+ "learning_rate": 0.00016839094449853944,
974
+ "loss": 0.0491,
975
+ "step": 5950
976
+ },
977
+ {
978
+ "epoch": 1.3767783386874712,
979
+ "grad_norm": 0.1810847669839859,
980
+ "learning_rate": 0.00016534810126582277,
981
+ "loss": 0.045,
982
+ "step": 6000
983
+ },
984
+ {
985
+ "epoch": 1.3767783386874712,
986
+ "eval_accuracy": 0.9835904174637322,
987
+ "eval_f1": 0.9660336726703211,
988
+ "eval_loss": 0.04917869716882706,
989
+ "eval_precision": 0.9631038353574605,
990
+ "eval_recall": 0.9706993139499732,
991
+ "eval_runtime": 119.0826,
992
+ "eval_samples_per_second": 167.279,
993
+ "eval_steps_per_second": 10.455,
994
+ "step": 6000
995
+ },
996
+ {
997
+ "epoch": 1.388251491509867,
998
+ "grad_norm": 0.15973134338855743,
999
+ "learning_rate": 0.00016230525803310615,
1000
+ "loss": 0.0444,
1001
+ "step": 6050
1002
+ },
1003
+ {
1004
+ "epoch": 1.3997246443322626,
1005
+ "grad_norm": 0.24404683709144592,
1006
+ "learning_rate": 0.0001592624148003895,
1007
+ "loss": 0.046,
1008
+ "step": 6100
1009
+ },
1010
+ {
1011
+ "epoch": 1.411197797154658,
1012
+ "grad_norm": 0.3005557656288147,
1013
+ "learning_rate": 0.00015621957156767283,
1014
+ "loss": 0.0525,
1015
+ "step": 6150
1016
+ },
1017
+ {
1018
+ "epoch": 1.4226709499770536,
1019
+ "grad_norm": 0.2723326086997986,
1020
+ "learning_rate": 0.0001531767283349562,
1021
+ "loss": 0.0487,
1022
+ "step": 6200
1023
+ },
1024
+ {
1025
+ "epoch": 1.4341441027994493,
1026
+ "grad_norm": 0.2460734099149704,
1027
+ "learning_rate": 0.00015013388510223954,
1028
+ "loss": 0.0455,
1029
+ "step": 6250
1030
+ },
1031
+ {
1032
+ "epoch": 1.445617255621845,
1033
+ "grad_norm": 0.32472339272499084,
1034
+ "learning_rate": 0.00014709104186952287,
1035
+ "loss": 0.0444,
1036
+ "step": 6300
1037
+ },
1038
+ {
1039
+ "epoch": 1.4570904084442404,
1040
+ "grad_norm": 0.35655590891838074,
1041
+ "learning_rate": 0.00014404819863680625,
1042
+ "loss": 0.053,
1043
+ "step": 6350
1044
+ },
1045
+ {
1046
+ "epoch": 1.4685635612666361,
1047
+ "grad_norm": 0.23245665431022644,
1048
+ "learning_rate": 0.0001410053554040896,
1049
+ "loss": 0.0472,
1050
+ "step": 6400
1051
+ },
1052
+ {
1053
+ "epoch": 1.4800367140890316,
1054
+ "grad_norm": 0.16704195737838745,
1055
+ "learning_rate": 0.00013796251217137293,
1056
+ "loss": 0.0483,
1057
+ "step": 6450
1058
+ },
1059
+ {
1060
+ "epoch": 1.4915098669114273,
1061
+ "grad_norm": 0.16793860495090485,
1062
+ "learning_rate": 0.00013491966893865629,
1063
+ "loss": 0.0453,
1064
+ "step": 6500
1065
+ },
1066
+ {
1067
+ "epoch": 1.4915098669114273,
1068
+ "eval_accuracy": 0.9840196424064407,
1069
+ "eval_f1": 0.9677403990141918,
1070
+ "eval_loss": 0.04730767011642456,
1071
+ "eval_precision": 0.9666379623287346,
1072
+ "eval_recall": 0.9698169810038056,
1073
+ "eval_runtime": 119.877,
1074
+ "eval_samples_per_second": 166.17,
1075
+ "eval_steps_per_second": 10.386,
1076
+ "step": 6500
1077
+ },
1078
+ {
1079
+ "epoch": 1.502983019733823,
1080
+ "grad_norm": 0.24766087532043457,
1081
+ "learning_rate": 0.00013187682570593964,
1082
+ "loss": 0.0433,
1083
+ "step": 6550
1084
+ },
1085
+ {
1086
+ "epoch": 1.5144561725562184,
1087
+ "grad_norm": 0.28402864933013916,
1088
+ "learning_rate": 0.00012883398247322297,
1089
+ "loss": 0.0451,
1090
+ "step": 6600
1091
+ },
1092
+ {
1093
+ "epoch": 1.525929325378614,
1094
+ "grad_norm": 0.23255027830600739,
1095
+ "learning_rate": 0.00012579113924050635,
1096
+ "loss": 0.0494,
1097
+ "step": 6650
1098
+ },
1099
+ {
1100
+ "epoch": 1.5374024782010096,
1101
+ "grad_norm": 0.2084839642047882,
1102
+ "learning_rate": 0.00012274829600778967,
1103
+ "loss": 0.0524,
1104
+ "step": 6700
1105
+ },
1106
+ {
1107
+ "epoch": 1.5488756310234053,
1108
+ "grad_norm": 0.2631557285785675,
1109
+ "learning_rate": 0.00011970545277507303,
1110
+ "loss": 0.0447,
1111
+ "step": 6750
1112
+ },
1113
+ {
1114
+ "epoch": 1.5603487838458008,
1115
+ "grad_norm": 0.203273743391037,
1116
+ "learning_rate": 0.00011666260954235638,
1117
+ "loss": 0.046,
1118
+ "step": 6800
1119
+ },
1120
+ {
1121
+ "epoch": 1.5718219366681965,
1122
+ "grad_norm": 0.17683915793895721,
1123
+ "learning_rate": 0.00011361976630963972,
1124
+ "loss": 0.0488,
1125
+ "step": 6850
1126
+ },
1127
+ {
1128
+ "epoch": 1.583295089490592,
1129
+ "grad_norm": 0.22857971489429474,
1130
+ "learning_rate": 0.00011057692307692308,
1131
+ "loss": 0.047,
1132
+ "step": 6900
1133
+ },
1134
+ {
1135
+ "epoch": 1.5947682423129876,
1136
+ "grad_norm": 0.13033239543437958,
1137
+ "learning_rate": 0.00010753407984420643,
1138
+ "loss": 0.0477,
1139
+ "step": 6950
1140
+ },
1141
+ {
1142
+ "epoch": 1.6062413951353833,
1143
+ "grad_norm": 0.1830282211303711,
1144
+ "learning_rate": 0.00010449123661148977,
1145
+ "loss": 0.0455,
1146
+ "step": 7000
1147
+ },
1148
+ {
1149
+ "epoch": 1.6062413951353833,
1150
+ "eval_accuracy": 0.9839478813613316,
1151
+ "eval_f1": 0.9673812546821595,
1152
+ "eval_loss": 0.04686596244573593,
1153
+ "eval_precision": 0.9634884038843466,
1154
+ "eval_recall": 0.9731322385654713,
1155
+ "eval_runtime": 121.2935,
1156
+ "eval_samples_per_second": 164.23,
1157
+ "eval_steps_per_second": 10.264,
1158
+ "step": 7000
1159
+ },
1160
+ {
1161
+ "epoch": 1.6177145479577788,
1162
+ "grad_norm": 0.262114942073822,
1163
+ "learning_rate": 0.00010144839337877313,
1164
+ "loss": 0.0491,
1165
+ "step": 7050
1166
+ },
1167
+ {
1168
+ "epoch": 1.6291877007801743,
1169
+ "grad_norm": 0.2282840460538864,
1170
+ "learning_rate": 9.840555014605648e-05,
1171
+ "loss": 0.0478,
1172
+ "step": 7100
1173
+ },
1174
+ {
1175
+ "epoch": 1.64066085360257,
1176
+ "grad_norm": 0.3352207839488983,
1177
+ "learning_rate": 9.536270691333982e-05,
1178
+ "loss": 0.047,
1179
+ "step": 7150
1180
+ },
1181
+ {
1182
+ "epoch": 1.6521340064249657,
1183
+ "grad_norm": 0.21367865800857544,
1184
+ "learning_rate": 9.231986368062318e-05,
1185
+ "loss": 0.0438,
1186
+ "step": 7200
1187
+ },
1188
+ {
1189
+ "epoch": 1.6636071592473611,
1190
+ "grad_norm": 0.29630246758461,
1191
+ "learning_rate": 8.927702044790653e-05,
1192
+ "loss": 0.0476,
1193
+ "step": 7250
1194
+ },
1195
+ {
1196
+ "epoch": 1.6750803120697566,
1197
+ "grad_norm": 0.18861912190914154,
1198
+ "learning_rate": 8.623417721518987e-05,
1199
+ "loss": 0.0404,
1200
+ "step": 7300
1201
+ },
1202
+ {
1203
+ "epoch": 1.6865534648921523,
1204
+ "grad_norm": 0.24099300801753998,
1205
+ "learning_rate": 8.319133398247323e-05,
1206
+ "loss": 0.0438,
1207
+ "step": 7350
1208
+ },
1209
+ {
1210
+ "epoch": 1.698026617714548,
1211
+ "grad_norm": 0.4395439326763153,
1212
+ "learning_rate": 8.014849074975658e-05,
1213
+ "loss": 0.0434,
1214
+ "step": 7400
1215
+ },
1216
+ {
1217
+ "epoch": 1.7094997705369437,
1218
+ "grad_norm": 0.30208903551101685,
1219
+ "learning_rate": 7.710564751703992e-05,
1220
+ "loss": 0.0459,
1221
+ "step": 7450
1222
+ },
1223
+ {
1224
+ "epoch": 1.7209729233593392,
1225
+ "grad_norm": 0.2277510166168213,
1226
+ "learning_rate": 7.406280428432327e-05,
1227
+ "loss": 0.0445,
1228
+ "step": 7500
1229
+ },
1230
+ {
1231
+ "epoch": 1.7209729233593392,
1232
+ "eval_accuracy": 0.9839078650776103,
1233
+ "eval_f1": 0.9673493479575279,
1234
+ "eval_loss": 0.04653547704219818,
1235
+ "eval_precision": 0.9639073876576003,
1236
+ "eval_recall": 0.9731134347485857,
1237
+ "eval_runtime": 120.0655,
1238
+ "eval_samples_per_second": 165.909,
1239
+ "eval_steps_per_second": 10.369,
1240
+ "step": 7500
1241
+ },
1242
+ {
1243
+ "epoch": 1.7324460761817346,
1244
+ "grad_norm": 0.26645800471305847,
1245
+ "learning_rate": 7.101996105160661e-05,
1246
+ "loss": 0.0487,
1247
+ "step": 7550
1248
+ },
1249
+ {
1250
+ "epoch": 1.7439192290041303,
1251
+ "grad_norm": 0.254226416349411,
1252
+ "learning_rate": 6.797711781888997e-05,
1253
+ "loss": 0.0476,
1254
+ "step": 7600
1255
+ },
1256
+ {
1257
+ "epoch": 1.755392381826526,
1258
+ "grad_norm": 0.35157519578933716,
1259
+ "learning_rate": 6.493427458617332e-05,
1260
+ "loss": 0.047,
1261
+ "step": 7650
1262
+ },
1263
+ {
1264
+ "epoch": 1.7668655346489215,
1265
+ "grad_norm": 0.28356507420539856,
1266
+ "learning_rate": 6.189143135345668e-05,
1267
+ "loss": 0.0453,
1268
+ "step": 7700
1269
+ },
1270
+ {
1271
+ "epoch": 1.778338687471317,
1272
+ "grad_norm": 0.24292881786823273,
1273
+ "learning_rate": 5.8848588120740025e-05,
1274
+ "loss": 0.043,
1275
+ "step": 7750
1276
+ },
1277
+ {
1278
+ "epoch": 1.7898118402937127,
1279
+ "grad_norm": 0.23205772042274475,
1280
+ "learning_rate": 5.5805744888023366e-05,
1281
+ "loss": 0.047,
1282
+ "step": 7800
1283
+ },
1284
+ {
1285
+ "epoch": 1.8012849931161083,
1286
+ "grad_norm": 0.22511674463748932,
1287
+ "learning_rate": 5.276290165530672e-05,
1288
+ "loss": 0.0485,
1289
+ "step": 7850
1290
+ },
1291
+ {
1292
+ "epoch": 1.812758145938504,
1293
+ "grad_norm": 0.11639175564050674,
1294
+ "learning_rate": 4.9720058422590074e-05,
1295
+ "loss": 0.0468,
1296
+ "step": 7900
1297
+ },
1298
+ {
1299
+ "epoch": 1.8242312987608995,
1300
+ "grad_norm": 0.3817405104637146,
1301
+ "learning_rate": 4.6677215189873415e-05,
1302
+ "loss": 0.0436,
1303
+ "step": 7950
1304
+ },
1305
+ {
1306
+ "epoch": 1.835704451583295,
1307
+ "grad_norm": 0.23685210943222046,
1308
+ "learning_rate": 4.363437195715677e-05,
1309
+ "loss": 0.0485,
1310
+ "step": 8000
1311
+ },
1312
+ {
1313
+ "epoch": 1.835704451583295,
1314
+ "eval_accuracy": 0.9847846464449556,
1315
+ "eval_f1": 0.9692734951155788,
1316
+ "eval_loss": 0.044191647320985794,
1317
+ "eval_precision": 0.9682748217756245,
1318
+ "eval_recall": 0.9715440392623697,
1319
+ "eval_runtime": 119.9631,
1320
+ "eval_samples_per_second": 166.051,
1321
+ "eval_steps_per_second": 10.378,
1322
+ "step": 8000
1323
+ },
1324
+ {
1325
+ "epoch": 1.8471776044056907,
1326
+ "grad_norm": 0.28396812081336975,
1327
+ "learning_rate": 4.0591528724440116e-05,
1328
+ "loss": 0.0444,
1329
+ "step": 8050
1330
+ },
1331
+ {
1332
+ "epoch": 1.8586507572280864,
1333
+ "grad_norm": 0.21980591118335724,
1334
+ "learning_rate": 3.7548685491723464e-05,
1335
+ "loss": 0.0419,
1336
+ "step": 8100
1337
+ },
1338
+ {
1339
+ "epoch": 1.8701239100504818,
1340
+ "grad_norm": 0.1881207823753357,
1341
+ "learning_rate": 3.450584225900682e-05,
1342
+ "loss": 0.046,
1343
+ "step": 8150
1344
+ },
1345
+ {
1346
+ "epoch": 1.8815970628728773,
1347
+ "grad_norm": 0.18880091607570648,
1348
+ "learning_rate": 3.1462999026290165e-05,
1349
+ "loss": 0.043,
1350
+ "step": 8200
1351
+ },
1352
+ {
1353
+ "epoch": 1.893070215695273,
1354
+ "grad_norm": 0.22343367338180542,
1355
+ "learning_rate": 2.8420155793573516e-05,
1356
+ "loss": 0.051,
1357
+ "step": 8250
1358
+ },
1359
+ {
1360
+ "epoch": 1.9045433685176687,
1361
+ "grad_norm": 0.18008331954479218,
1362
+ "learning_rate": 2.5377312560856864e-05,
1363
+ "loss": 0.0451,
1364
+ "step": 8300
1365
+ },
1366
+ {
1367
+ "epoch": 1.9160165213400644,
1368
+ "grad_norm": 0.4132407009601593,
1369
+ "learning_rate": 2.2334469328140214e-05,
1370
+ "loss": 0.0435,
1371
+ "step": 8350
1372
+ },
1373
+ {
1374
+ "epoch": 1.9274896741624599,
1375
+ "grad_norm": 0.2056247442960739,
1376
+ "learning_rate": 1.9291626095423565e-05,
1377
+ "loss": 0.0471,
1378
+ "step": 8400
1379
+ },
1380
+ {
1381
+ "epoch": 1.9389628269848553,
1382
+ "grad_norm": 0.4490518569946289,
1383
+ "learning_rate": 1.6248782862706913e-05,
1384
+ "loss": 0.0421,
1385
+ "step": 8450
1386
+ },
1387
+ {
1388
+ "epoch": 1.950435979807251,
1389
+ "grad_norm": 0.2667485475540161,
1390
+ "learning_rate": 1.3205939629990263e-05,
1391
+ "loss": 0.0438,
1392
+ "step": 8500
1393
+ },
1394
+ {
1395
+ "epoch": 1.950435979807251,
1396
+ "eval_accuracy": 0.9849789154424627,
1397
+ "eval_f1": 0.9694837693189375,
1398
+ "eval_loss": 0.043701887130737305,
1399
+ "eval_precision": 0.9670561105755402,
1400
+ "eval_recall": 0.9732580794938591,
1401
+ "eval_runtime": 120.742,
1402
+ "eval_samples_per_second": 164.98,
1403
+ "eval_steps_per_second": 10.311,
1404
+ "step": 8500
1405
+ },
1406
+ {
1407
+ "epoch": 1.9619091326296467,
1408
+ "grad_norm": 0.14612677693367004,
1409
+ "learning_rate": 1.0163096397273614e-05,
1410
+ "loss": 0.0512,
1411
+ "step": 8550
1412
+ },
1413
+ {
1414
+ "epoch": 1.9733822854520422,
1415
+ "grad_norm": 0.27156341075897217,
1416
+ "learning_rate": 7.120253164556962e-06,
1417
+ "loss": 0.0442,
1418
+ "step": 8600
1419
+ },
1420
+ {
1421
+ "epoch": 1.9848554382744377,
1422
+ "grad_norm": 0.20725247263908386,
1423
+ "learning_rate": 4.077409931840312e-06,
1424
+ "loss": 0.0425,
1425
+ "step": 8650
1426
+ },
1427
+ {
1428
+ "epoch": 1.9963285910968334,
1429
+ "grad_norm": 0.2892477810382843,
1430
+ "learning_rate": 1.0345666991236611e-06,
1431
+ "loss": 0.0473,
1432
+ "step": 8700
1433
+ }
1434
+ ],
1435
+ "logging_steps": 50,
1436
+ "max_steps": 8716,
1437
+ "num_input_tokens_seen": 0,
1438
+ "num_train_epochs": 2,
1439
+ "save_steps": 1000,
1440
+ "stateful_callbacks": {
1441
+ "TrainerControl": {
1442
+ "args": {
1443
+ "should_epoch_stop": false,
1444
+ "should_evaluate": false,
1445
+ "should_log": false,
1446
+ "should_save": true,
1447
+ "should_training_stop": true
1448
+ },
1449
+ "attributes": {}
1450
+ }
1451
+ },
1452
+ "total_flos": 2.1788367731619216e+16,
1453
+ "train_batch_size": 16,
1454
+ "trial_name": null,
1455
+ "trial_params": null
1456
+ }
checkpoint-8716/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c25f499fd0637dd40aacba2ee37a71fbf01438bc7cbb57bc752e6d4140572a35
3
+ size 5841
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0dd103f98dee7758a7916a783307af9f65932119d66eedade7204a203817a6cc
3
  size 5841
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c25f499fd0637dd40aacba2ee37a71fbf01438bc7cbb57bc752e6d4140572a35
3
  size 5841