AlexanderMaz commited on
Commit
848d60e
·
verified ·
1 Parent(s): f95b4b4

Upload acta anonymizer adapter - Latest (v20250914_035417)

Browse files
.gitattributes CHANGED
@@ -42,3 +42,5 @@ versions/20250914_034323/tokenizer.json filter=lfs diff=lfs merge=lfs -text
42
  versions/20250914_035417/checkpoint-12000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
  versions/20250914_035417/checkpoint-13074/tokenizer.json filter=lfs diff=lfs merge=lfs -text
44
  versions/20250914_035417/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
42
  versions/20250914_035417/checkpoint-12000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
  versions/20250914_035417/checkpoint-13074/tokenizer.json filter=lfs diff=lfs merge=lfs -text
44
  versions/20250914_035417/tokenizer.json filter=lfs diff=lfs merge=lfs -text
45
+ checkpoint-12000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
46
+ checkpoint-13074/tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,91 +1,206 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - ro
5
  base_model: EvanD/xlm-roberta-base-romanian-ner-ronec
 
6
  tags:
7
- - token-classification
8
- - named-entity-recognition
9
- - pii-detection
10
- - romanian
11
- - moldova
12
- - financial-pii
13
- - banking
14
- - fintech
15
  ---
16
 
17
- # Finguys/acta-anonymizer-financial
18
 
19
- Acta Anonymizer Financial Adapter
20
 
21
- This model is a fine-tuned adapter for Romanian financial text anonymization.
22
- It's based on XLM-RoBERTa and trained specifically for detecting and anonymizing
23
- PII in Romanian financial documents from Moldova.
24
 
25
- Key features:
26
- - Romanian language support
27
- - Financial domain specialization
28
- - GDPR compliance focused
29
- - High accuracy PII detection
30
 
31
- Use cases:
32
- - Banking document anonymization
33
- - Financial report processing
34
- - Compliance data handling
35
 
 
36
 
37
- **Current Version**: 20250914_034323
38
 
39
- ## Key Features
40
 
41
- - Romanian language support
42
- - GDPR compliance focused
43
- - High accuracy PII detection
44
- - Domain-specific fine-tuning
45
 
46
- ## Use Cases
 
 
 
 
 
 
47
 
48
- - Banking document anonymization
49
- - Financial report processing
50
- - Compliance data handling
51
 
52
- ## Training Data
53
 
54
- This model was trained on synthetic Moldovan PII data for financial domain anonymization.
 
 
55
 
56
- ## Usage
57
 
58
- ```python
59
- from peft import PeftModel
60
- from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
61
 
62
- # Load base model
63
- model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-romanian-ner-ronec")
64
- tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-romanian-ner-ronec")
65
 
66
- # Load adapter
67
- model = PeftModel.from_pretrained(model, "Finguys/acta-anonymizer-financial")
68
 
69
- # Create pipeline
70
- ner_pipeline = pipeline(
71
- "token-classification",
72
- model=model,
73
- tokenizer=tokenizer,
74
- aggregation_strategy="simple"
75
- )
76
 
77
- # Example usage
78
- text = "Ion Popescu are un cont la Banca Transilvania cu IBAN RO49AAAA1B310075938400000."
79
- entities = ner_pipeline(text)
80
- print(entities)
81
- ```
82
 
83
- ## Training
84
 
85
- This model was trained using LoRA (Low-Rank Adaptation) on synthetic Moldovan PII data.
86
 
87
- ## Versions
88
 
89
- - **Latest**: Root level contains the most recent version
90
- - **Archived**: Previous versions are stored in `versions/` folder
91
- - **Version Index**: See `version_history.yaml` for complete version history
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model: EvanD/xlm-roberta-base-romanian-ner-ronec
3
+ library_name: peft
4
  tags:
5
+ - base_model:adapter:EvanD/xlm-roberta-base-romanian-ner-ronec
6
+ - lora
7
+ - transformers
 
 
 
 
 
8
  ---
9
 
10
+ # Model Card for Model ID
11
 
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
 
 
 
 
14
 
 
 
 
 
 
15
 
16
+ ## Model Details
 
 
 
17
 
18
+ ### Model Description
19
 
20
+ <!-- Provide a longer summary of what this model is. -->
21
 
 
22
 
 
 
 
 
23
 
24
+ - **Developed by:** [More Information Needed]
25
+ - **Funded by [optional]:** [More Information Needed]
26
+ - **Shared by [optional]:** [More Information Needed]
27
+ - **Model type:** [More Information Needed]
28
+ - **Language(s) (NLP):** [More Information Needed]
29
+ - **License:** [More Information Needed]
30
+ - **Finetuned from model [optional]:** [More Information Needed]
31
 
32
+ ### Model Sources [optional]
 
 
33
 
34
+ <!-- Provide the basic links for the model. -->
35
 
36
+ - **Repository:** [More Information Needed]
37
+ - **Paper [optional]:** [More Information Needed]
38
+ - **Demo [optional]:** [More Information Needed]
39
 
40
+ ## Uses
41
 
42
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
43
 
44
+ ### Direct Use
 
 
45
 
46
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
47
 
48
+ [More Information Needed]
 
 
 
 
 
 
49
 
50
+ ### Downstream Use [optional]
 
 
 
 
51
 
52
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
 
54
+ [More Information Needed]
55
 
56
+ ### Out-of-Scope Use
57
 
58
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
+
60
+ [More Information Needed]
61
+
62
+ ## Bias, Risks, and Limitations
63
+
64
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
+
66
+ [More Information Needed]
67
+
68
+ ### Recommendations
69
+
70
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
+
72
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
+
74
+ ## How to Get Started with the Model
75
+
76
+ Use the code below to get started with the model.
77
+
78
+ [More Information Needed]
79
+
80
+ ## Training Details
81
+
82
+ ### Training Data
83
+
84
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
+
86
+ [More Information Needed]
87
+
88
+ ### Training Procedure
89
+
90
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
+
92
+ #### Preprocessing [optional]
93
+
94
+ [More Information Needed]
95
+
96
+
97
+ #### Training Hyperparameters
98
+
99
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
+
101
+ #### Speeds, Sizes, Times [optional]
102
+
103
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
+
105
+ [More Information Needed]
106
+
107
+ ## Evaluation
108
+
109
+ <!-- This section describes the evaluation protocols and provides the results. -->
110
+
111
+ ### Testing Data, Factors & Metrics
112
+
113
+ #### Testing Data
114
+
115
+ <!-- This should link to a Dataset Card if possible. -->
116
+
117
+ [More Information Needed]
118
+
119
+ #### Factors
120
+
121
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
+
123
+ [More Information Needed]
124
+
125
+ #### Metrics
126
+
127
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
+
129
+ [More Information Needed]
130
+
131
+ ### Results
132
+
133
+ [More Information Needed]
134
+
135
+ #### Summary
136
+
137
+
138
+
139
+ ## Model Examination [optional]
140
+
141
+ <!-- Relevant interpretability work for the model goes here -->
142
+
143
+ [More Information Needed]
144
+
145
+ ## Environmental Impact
146
+
147
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
+
149
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
+
151
+ - **Hardware Type:** [More Information Needed]
152
+ - **Hours used:** [More Information Needed]
153
+ - **Cloud Provider:** [More Information Needed]
154
+ - **Compute Region:** [More Information Needed]
155
+ - **Carbon Emitted:** [More Information Needed]
156
+
157
+ ## Technical Specifications [optional]
158
+
159
+ ### Model Architecture and Objective
160
+
161
+ [More Information Needed]
162
+
163
+ ### Compute Infrastructure
164
+
165
+ [More Information Needed]
166
+
167
+ #### Hardware
168
+
169
+ [More Information Needed]
170
+
171
+ #### Software
172
+
173
+ [More Information Needed]
174
+
175
+ ## Citation [optional]
176
+
177
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
+
179
+ **BibTeX:**
180
+
181
+ [More Information Needed]
182
+
183
+ **APA:**
184
+
185
+ [More Information Needed]
186
+
187
+ ## Glossary [optional]
188
+
189
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
+
191
+ [More Information Needed]
192
+
193
+ ## More Information [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Authors [optional]
198
+
199
+ [More Information Needed]
200
+
201
+ ## Model Card Contact
202
+
203
+ [More Information Needed]
204
+ ### Framework versions
205
+
206
+ - PEFT 0.17.1
adapter_config.json CHANGED
@@ -28,10 +28,10 @@
28
  "rank_pattern": {},
29
  "revision": null,
30
  "target_modules": [
31
- "value",
32
- "query",
33
  "dense",
34
- "key"
 
 
35
  ],
36
  "target_parameters": null,
37
  "task_type": "TOKEN_CLS",
 
28
  "rank_pattern": {},
29
  "revision": null,
30
  "target_modules": [
 
 
31
  "dense",
32
+ "key",
33
+ "query",
34
+ "value"
35
  ],
36
  "target_parameters": null,
37
  "task_type": "TOKEN_CLS",
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8c48e02ea2efdc2f0d2341324d8dc56d3483d77b72650da8190837e34d17ca9b
3
  size 10899068
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff2623b5e82b5d0e70983ebf344f330bb8f3e1226a105a5aed87766442cec175
3
  size 10899068
checkpoint-12000/README.md ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: EvanD/xlm-roberta-base-romanian-ner-ronec
3
+ library_name: peft
4
+ tags:
5
+ - base_model:adapter:EvanD/xlm-roberta-base-romanian-ner-ronec
6
+ - lora
7
+ - transformers
8
+ ---
9
+
10
+ # Model Card for Model ID
11
+
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
+
14
+
15
+
16
+ ## Model Details
17
+
18
+ ### Model Description
19
+
20
+ <!-- Provide a longer summary of what this model is. -->
21
+
22
+
23
+
24
+ - **Developed by:** [More Information Needed]
25
+ - **Funded by [optional]:** [More Information Needed]
26
+ - **Shared by [optional]:** [More Information Needed]
27
+ - **Model type:** [More Information Needed]
28
+ - **Language(s) (NLP):** [More Information Needed]
29
+ - **License:** [More Information Needed]
30
+ - **Finetuned from model [optional]:** [More Information Needed]
31
+
32
+ ### Model Sources [optional]
33
+
34
+ <!-- Provide the basic links for the model. -->
35
+
36
+ - **Repository:** [More Information Needed]
37
+ - **Paper [optional]:** [More Information Needed]
38
+ - **Demo [optional]:** [More Information Needed]
39
+
40
+ ## Uses
41
+
42
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
+
44
+ ### Direct Use
45
+
46
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
+
48
+ [More Information Needed]
49
+
50
+ ### Downstream Use [optional]
51
+
52
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
+
54
+ [More Information Needed]
55
+
56
+ ### Out-of-Scope Use
57
+
58
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
+
60
+ [More Information Needed]
61
+
62
+ ## Bias, Risks, and Limitations
63
+
64
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
+
66
+ [More Information Needed]
67
+
68
+ ### Recommendations
69
+
70
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
+
72
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
+
74
+ ## How to Get Started with the Model
75
+
76
+ Use the code below to get started with the model.
77
+
78
+ [More Information Needed]
79
+
80
+ ## Training Details
81
+
82
+ ### Training Data
83
+
84
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
+
86
+ [More Information Needed]
87
+
88
+ ### Training Procedure
89
+
90
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
+
92
+ #### Preprocessing [optional]
93
+
94
+ [More Information Needed]
95
+
96
+
97
+ #### Training Hyperparameters
98
+
99
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
+
101
+ #### Speeds, Sizes, Times [optional]
102
+
103
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
+
105
+ [More Information Needed]
106
+
107
+ ## Evaluation
108
+
109
+ <!-- This section describes the evaluation protocols and provides the results. -->
110
+
111
+ ### Testing Data, Factors & Metrics
112
+
113
+ #### Testing Data
114
+
115
+ <!-- This should link to a Dataset Card if possible. -->
116
+
117
+ [More Information Needed]
118
+
119
+ #### Factors
120
+
121
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
+
123
+ [More Information Needed]
124
+
125
+ #### Metrics
126
+
127
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
+
129
+ [More Information Needed]
130
+
131
+ ### Results
132
+
133
+ [More Information Needed]
134
+
135
+ #### Summary
136
+
137
+
138
+
139
+ ## Model Examination [optional]
140
+
141
+ <!-- Relevant interpretability work for the model goes here -->
142
+
143
+ [More Information Needed]
144
+
145
+ ## Environmental Impact
146
+
147
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
+
149
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
+
151
+ - **Hardware Type:** [More Information Needed]
152
+ - **Hours used:** [More Information Needed]
153
+ - **Cloud Provider:** [More Information Needed]
154
+ - **Compute Region:** [More Information Needed]
155
+ - **Carbon Emitted:** [More Information Needed]
156
+
157
+ ## Technical Specifications [optional]
158
+
159
+ ### Model Architecture and Objective
160
+
161
+ [More Information Needed]
162
+
163
+ ### Compute Infrastructure
164
+
165
+ [More Information Needed]
166
+
167
+ #### Hardware
168
+
169
+ [More Information Needed]
170
+
171
+ #### Software
172
+
173
+ [More Information Needed]
174
+
175
+ ## Citation [optional]
176
+
177
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
+
179
+ **BibTeX:**
180
+
181
+ [More Information Needed]
182
+
183
+ **APA:**
184
+
185
+ [More Information Needed]
186
+
187
+ ## Glossary [optional]
188
+
189
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
+
191
+ [More Information Needed]
192
+
193
+ ## More Information [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Authors [optional]
198
+
199
+ [More Information Needed]
200
+
201
+ ## Model Card Contact
202
+
203
+ [More Information Needed]
204
+ ### Framework versions
205
+
206
+ - PEFT 0.17.1
checkpoint-12000/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "EvanD/xlm-roberta-base-romanian-ner-ronec",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "classifier",
23
+ "score"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "qalora_group_size": 16,
27
+ "r": 16,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "dense",
32
+ "key",
33
+ "query",
34
+ "value"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "TOKEN_CLS",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-12000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff2623b5e82b5d0e70983ebf344f330bb8f3e1226a105a5aed87766442cec175
3
+ size 10899068
checkpoint-12000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74dc3270b391cca521fac3b9b4b5a0ea652ed78f7085fe88a455f8abae47e296
3
+ size 21881739
checkpoint-12000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d327ec768bc9db09d2d40744308223acb0ca55e9716c223edf491867a0d4754a
3
+ size 14645
checkpoint-12000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5e033dce0b47487f8dd1cbf11ade358cc197177ea116db3c69784d048534456
3
+ size 1465
checkpoint-12000/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-12000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8373f9cd3d27591e1924426bcc1c8799bc5a9affc4fc857982c5d66668dd1f41
3
+ size 17082832
checkpoint-12000/tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "stride": 0,
55
+ "tokenizer_class": "XLMRobertaTokenizer",
56
+ "truncation_side": "right",
57
+ "truncation_strategy": "longest_first",
58
+ "unk_token": "<unk>"
59
+ }
checkpoint-12000/trainer_state.json ADDED
@@ -0,0 +1,2002 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 12000,
3
+ "best_metric": 0.9476076338095303,
4
+ "best_model_checkpoint": "./models/financial_adapter_20250914_035417/checkpoint-12000",
5
+ "epoch": 2.7535566773749425,
6
+ "eval_steps": 500,
7
+ "global_step": 12000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.011473152822395595,
14
+ "grad_norm": 5.206177234649658,
15
+ "learning_rate": 4.9000000000000005e-05,
16
+ "loss": 3.7097,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.02294630564479119,
21
+ "grad_norm": 0.7576159834861755,
22
+ "learning_rate": 9.900000000000001e-05,
23
+ "loss": 1.1878,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.03441945846718678,
28
+ "grad_norm": 1.0443555116653442,
29
+ "learning_rate": 0.000149,
30
+ "loss": 0.5979,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.04589261128958238,
35
+ "grad_norm": 0.8121919631958008,
36
+ "learning_rate": 0.000199,
37
+ "loss": 0.351,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.05736576411197797,
42
+ "grad_norm": 0.5419031381607056,
43
+ "learning_rate": 0.000249,
44
+ "loss": 0.2513,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.06883891693437356,
49
+ "grad_norm": 0.969489336013794,
50
+ "learning_rate": 0.000299,
51
+ "loss": 0.2124,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.08031206975676916,
56
+ "grad_norm": 0.7236778140068054,
57
+ "learning_rate": 0.00034899999999999997,
58
+ "loss": 0.1806,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.09178522257916476,
63
+ "grad_norm": 0.7271482348442078,
64
+ "learning_rate": 0.00039900000000000005,
65
+ "loss": 0.1677,
66
+ "step": 400
67
+ },
68
+ {
69
+ "epoch": 0.10325837540156035,
70
+ "grad_norm": 0.5921468734741211,
71
+ "learning_rate": 0.000449,
72
+ "loss": 0.151,
73
+ "step": 450
74
+ },
75
+ {
76
+ "epoch": 0.11473152822395594,
77
+ "grad_norm": 0.7947412729263306,
78
+ "learning_rate": 0.000499,
79
+ "loss": 0.146,
80
+ "step": 500
81
+ },
82
+ {
83
+ "epoch": 0.11473152822395594,
84
+ "eval_accuracy": 0.9611541265050512,
85
+ "eval_f1": 0.9108550122870944,
86
+ "eval_loss": 0.13393332064151764,
87
+ "eval_precision": 0.9024035519296109,
88
+ "eval_recall": 0.920942706295809,
89
+ "eval_runtime": 157.6023,
90
+ "eval_samples_per_second": 126.394,
91
+ "eval_steps_per_second": 7.9,
92
+ "step": 500
93
+ },
94
+ {
95
+ "epoch": 0.12620468104635155,
96
+ "grad_norm": 0.42396143078804016,
97
+ "learning_rate": 0.0004980515349133132,
98
+ "loss": 0.1366,
99
+ "step": 550
100
+ },
101
+ {
102
+ "epoch": 0.13767783386874713,
103
+ "grad_norm": 0.4833989441394806,
104
+ "learning_rate": 0.0004960633052330205,
105
+ "loss": 0.1306,
106
+ "step": 600
107
+ },
108
+ {
109
+ "epoch": 0.14915098669114274,
110
+ "grad_norm": 0.5300698280334473,
111
+ "learning_rate": 0.0004940750755527279,
112
+ "loss": 0.1307,
113
+ "step": 650
114
+ },
115
+ {
116
+ "epoch": 0.16062413951353832,
117
+ "grad_norm": 0.391825407743454,
118
+ "learning_rate": 0.0004920868458724352,
119
+ "loss": 0.1294,
120
+ "step": 700
121
+ },
122
+ {
123
+ "epoch": 0.1720972923359339,
124
+ "grad_norm": 0.4168291985988617,
125
+ "learning_rate": 0.0004900986161921426,
126
+ "loss": 0.1143,
127
+ "step": 750
128
+ },
129
+ {
130
+ "epoch": 0.18357044515832951,
131
+ "grad_norm": 0.48850780725479126,
132
+ "learning_rate": 0.00048811038651184986,
133
+ "loss": 0.1164,
134
+ "step": 800
135
+ },
136
+ {
137
+ "epoch": 0.1950435979807251,
138
+ "grad_norm": 0.5360251665115356,
139
+ "learning_rate": 0.0004861221568315572,
140
+ "loss": 0.1162,
141
+ "step": 850
142
+ },
143
+ {
144
+ "epoch": 0.2065167508031207,
145
+ "grad_norm": 0.35034602880477905,
146
+ "learning_rate": 0.00048413392715126454,
147
+ "loss": 0.1161,
148
+ "step": 900
149
+ },
150
+ {
151
+ "epoch": 0.2179899036255163,
152
+ "grad_norm": 0.5149801969528198,
153
+ "learning_rate": 0.0004821456974709719,
154
+ "loss": 0.1193,
155
+ "step": 950
156
+ },
157
+ {
158
+ "epoch": 0.22946305644791187,
159
+ "grad_norm": 0.28831130266189575,
160
+ "learning_rate": 0.00048015746779067923,
161
+ "loss": 0.1133,
162
+ "step": 1000
163
+ },
164
+ {
165
+ "epoch": 0.22946305644791187,
166
+ "eval_accuracy": 0.9673264805199486,
167
+ "eval_f1": 0.9251527095587492,
168
+ "eval_loss": 0.10191841423511505,
169
+ "eval_precision": 0.9235157682187369,
170
+ "eval_recall": 0.924869302071445,
171
+ "eval_runtime": 120.0892,
172
+ "eval_samples_per_second": 165.877,
173
+ "eval_steps_per_second": 10.367,
174
+ "step": 1000
175
+ },
176
+ {
177
+ "epoch": 0.24093620927030748,
178
+ "grad_norm": 0.8704720735549927,
179
+ "learning_rate": 0.0004781692381103865,
180
+ "loss": 0.1155,
181
+ "step": 1050
182
+ },
183
+ {
184
+ "epoch": 0.2524093620927031,
185
+ "grad_norm": 0.29704341292381287,
186
+ "learning_rate": 0.00047618100843009386,
187
+ "loss": 0.1067,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 0.2638825149150987,
192
+ "grad_norm": 0.3146417438983917,
193
+ "learning_rate": 0.0004741927787498012,
194
+ "loss": 0.1112,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 0.27535566773749426,
199
+ "grad_norm": 0.38349583745002747,
200
+ "learning_rate": 0.0004722045490695085,
201
+ "loss": 0.1072,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 0.28682882055988984,
206
+ "grad_norm": 0.3654622733592987,
207
+ "learning_rate": 0.00047021631938921584,
208
+ "loss": 0.1093,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 0.2983019733822855,
213
+ "grad_norm": 0.32350990176200867,
214
+ "learning_rate": 0.0004682280897089232,
215
+ "loss": 0.1003,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 0.30977512620468106,
220
+ "grad_norm": 0.4420382082462311,
221
+ "learning_rate": 0.0004662398600286305,
222
+ "loss": 0.1006,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 0.32124827902707664,
227
+ "grad_norm": 0.2918410301208496,
228
+ "learning_rate": 0.0004642516303483378,
229
+ "loss": 0.1009,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 0.3327214318494722,
234
+ "grad_norm": 0.5075766444206238,
235
+ "learning_rate": 0.00046226340066804516,
236
+ "loss": 0.1014,
237
+ "step": 1450
238
+ },
239
+ {
240
+ "epoch": 0.3441945846718678,
241
+ "grad_norm": 0.4021468460559845,
242
+ "learning_rate": 0.0004602751709877525,
243
+ "loss": 0.0978,
244
+ "step": 1500
245
+ },
246
+ {
247
+ "epoch": 0.3441945846718678,
248
+ "eval_accuracy": 0.9686035999975656,
249
+ "eval_f1": 0.9285241312222242,
250
+ "eval_loss": 0.09482518583536148,
251
+ "eval_precision": 0.9235005355255337,
252
+ "eval_recall": 0.9350632555342531,
253
+ "eval_runtime": 117.8493,
254
+ "eval_samples_per_second": 169.029,
255
+ "eval_steps_per_second": 10.564,
256
+ "step": 1500
257
+ },
258
+ {
259
+ "epoch": 0.35566773749426345,
260
+ "grad_norm": 0.41242897510528564,
261
+ "learning_rate": 0.00045828694130745984,
262
+ "loss": 0.0998,
263
+ "step": 1550
264
+ },
265
+ {
266
+ "epoch": 0.36714089031665903,
267
+ "grad_norm": 0.252006858587265,
268
+ "learning_rate": 0.0004562987116271672,
269
+ "loss": 0.0984,
270
+ "step": 1600
271
+ },
272
+ {
273
+ "epoch": 0.3786140431390546,
274
+ "grad_norm": 0.42907676100730896,
275
+ "learning_rate": 0.00045431048194687453,
276
+ "loss": 0.0929,
277
+ "step": 1650
278
+ },
279
+ {
280
+ "epoch": 0.3900871959614502,
281
+ "grad_norm": 0.3133847117424011,
282
+ "learning_rate": 0.0004523222522665819,
283
+ "loss": 0.0995,
284
+ "step": 1700
285
+ },
286
+ {
287
+ "epoch": 0.4015603487838458,
288
+ "grad_norm": 0.2857881188392639,
289
+ "learning_rate": 0.0004503340225862892,
290
+ "loss": 0.095,
291
+ "step": 1750
292
+ },
293
+ {
294
+ "epoch": 0.4130335016062414,
295
+ "grad_norm": 0.4199719727039337,
296
+ "learning_rate": 0.0004483457929059965,
297
+ "loss": 0.0953,
298
+ "step": 1800
299
+ },
300
+ {
301
+ "epoch": 0.424506654428637,
302
+ "grad_norm": 0.43477049469947815,
303
+ "learning_rate": 0.00044635756322570385,
304
+ "loss": 0.0901,
305
+ "step": 1850
306
+ },
307
+ {
308
+ "epoch": 0.4359798072510326,
309
+ "grad_norm": 0.35086822509765625,
310
+ "learning_rate": 0.00044436933354541114,
311
+ "loss": 0.0958,
312
+ "step": 1900
313
+ },
314
+ {
315
+ "epoch": 0.44745296007342816,
316
+ "grad_norm": 0.22967366874217987,
317
+ "learning_rate": 0.0004423811038651185,
318
+ "loss": 0.0962,
319
+ "step": 1950
320
+ },
321
+ {
322
+ "epoch": 0.45892611289582375,
323
+ "grad_norm": 0.32249829173088074,
324
+ "learning_rate": 0.0004403928741848258,
325
+ "loss": 0.0951,
326
+ "step": 2000
327
+ },
328
+ {
329
+ "epoch": 0.45892611289582375,
330
+ "eval_accuracy": 0.9690691774610883,
331
+ "eval_f1": 0.9302497431533381,
332
+ "eval_loss": 0.09183786809444427,
333
+ "eval_precision": 0.9194746692093528,
334
+ "eval_recall": 0.9462869502523432,
335
+ "eval_runtime": 121.4699,
336
+ "eval_samples_per_second": 163.991,
337
+ "eval_steps_per_second": 10.249,
338
+ "step": 2000
339
+ },
340
+ {
341
+ "epoch": 0.4703992657182194,
342
+ "grad_norm": 0.3483874797821045,
343
+ "learning_rate": 0.00043840464450453317,
344
+ "loss": 0.0934,
345
+ "step": 2050
346
+ },
347
+ {
348
+ "epoch": 0.48187241854061497,
349
+ "grad_norm": 0.446117103099823,
350
+ "learning_rate": 0.0004364164148242405,
351
+ "loss": 0.0916,
352
+ "step": 2100
353
+ },
354
+ {
355
+ "epoch": 0.49334557136301055,
356
+ "grad_norm": 0.26050707697868347,
357
+ "learning_rate": 0.0004344281851439478,
358
+ "loss": 0.0912,
359
+ "step": 2150
360
+ },
361
+ {
362
+ "epoch": 0.5048187241854062,
363
+ "grad_norm": 0.7050098776817322,
364
+ "learning_rate": 0.00043243995546365515,
365
+ "loss": 0.0999,
366
+ "step": 2200
367
+ },
368
+ {
369
+ "epoch": 0.5162918770078018,
370
+ "grad_norm": 0.29161128401756287,
371
+ "learning_rate": 0.0004304517257833625,
372
+ "loss": 0.0974,
373
+ "step": 2250
374
+ },
375
+ {
376
+ "epoch": 0.5277650298301974,
377
+ "grad_norm": 0.24913199245929718,
378
+ "learning_rate": 0.00042846349610306983,
379
+ "loss": 0.0943,
380
+ "step": 2300
381
+ },
382
+ {
383
+ "epoch": 0.5392381826525929,
384
+ "grad_norm": 0.2685433626174927,
385
+ "learning_rate": 0.0004264752664227772,
386
+ "loss": 0.0937,
387
+ "step": 2350
388
+ },
389
+ {
390
+ "epoch": 0.5507113354749885,
391
+ "grad_norm": 0.3128316402435303,
392
+ "learning_rate": 0.0004244870367424845,
393
+ "loss": 0.0883,
394
+ "step": 2400
395
+ },
396
+ {
397
+ "epoch": 0.5621844882973841,
398
+ "grad_norm": 0.35494470596313477,
399
+ "learning_rate": 0.00042249880706219186,
400
+ "loss": 0.0946,
401
+ "step": 2450
402
+ },
403
+ {
404
+ "epoch": 0.5736576411197797,
405
+ "grad_norm": 0.3994844853878021,
406
+ "learning_rate": 0.0004205105773818992,
407
+ "loss": 0.0947,
408
+ "step": 2500
409
+ },
410
+ {
411
+ "epoch": 0.5736576411197797,
412
+ "eval_accuracy": 0.9688650630577742,
413
+ "eval_f1": 0.9293096562713767,
414
+ "eval_loss": 0.08980941772460938,
415
+ "eval_precision": 0.9170516031608807,
416
+ "eval_recall": 0.9498239578921504,
417
+ "eval_runtime": 118.7417,
418
+ "eval_samples_per_second": 167.759,
419
+ "eval_steps_per_second": 10.485,
420
+ "step": 2500
421
+ },
422
+ {
423
+ "epoch": 0.5851307939421753,
424
+ "grad_norm": 0.2693902254104614,
425
+ "learning_rate": 0.0004185223477016065,
426
+ "loss": 0.0979,
427
+ "step": 2550
428
+ },
429
+ {
430
+ "epoch": 0.596603946764571,
431
+ "grad_norm": 0.32620301842689514,
432
+ "learning_rate": 0.00041653411802131384,
433
+ "loss": 0.0921,
434
+ "step": 2600
435
+ },
436
+ {
437
+ "epoch": 0.6080770995869665,
438
+ "grad_norm": 0.2753586173057556,
439
+ "learning_rate": 0.00041454588834102113,
440
+ "loss": 0.0955,
441
+ "step": 2650
442
+ },
443
+ {
444
+ "epoch": 0.6195502524093621,
445
+ "grad_norm": 0.23614081740379333,
446
+ "learning_rate": 0.00041255765866072847,
447
+ "loss": 0.1073,
448
+ "step": 2700
449
+ },
450
+ {
451
+ "epoch": 0.6310234052317577,
452
+ "grad_norm": 0.19146519899368286,
453
+ "learning_rate": 0.0004105694289804358,
454
+ "loss": 0.0918,
455
+ "step": 2750
456
+ },
457
+ {
458
+ "epoch": 0.6424965580541533,
459
+ "grad_norm": 0.3596530258655548,
460
+ "learning_rate": 0.00040858119930014316,
461
+ "loss": 0.0914,
462
+ "step": 2800
463
+ },
464
+ {
465
+ "epoch": 0.6539697108765489,
466
+ "grad_norm": 0.3061048090457916,
467
+ "learning_rate": 0.0004065929696198505,
468
+ "loss": 0.0892,
469
+ "step": 2850
470
+ },
471
+ {
472
+ "epoch": 0.6654428636989445,
473
+ "grad_norm": 0.2256966084241867,
474
+ "learning_rate": 0.00040460473993955784,
475
+ "loss": 0.0913,
476
+ "step": 2900
477
+ },
478
+ {
479
+ "epoch": 0.67691601652134,
480
+ "grad_norm": 0.3125688135623932,
481
+ "learning_rate": 0.00040261651025926513,
482
+ "loss": 0.0901,
483
+ "step": 2950
484
+ },
485
+ {
486
+ "epoch": 0.6883891693437356,
487
+ "grad_norm": 0.29263100028038025,
488
+ "learning_rate": 0.0004006282805789725,
489
+ "loss": 0.0873,
490
+ "step": 3000
491
+ },
492
+ {
493
+ "epoch": 0.6883891693437356,
494
+ "eval_accuracy": 0.9712428085954635,
495
+ "eval_f1": 0.9363408053418008,
496
+ "eval_loss": 0.0843813493847847,
497
+ "eval_precision": 0.9319932598753176,
498
+ "eval_recall": 0.9405207225324199,
499
+ "eval_runtime": 118.9982,
500
+ "eval_samples_per_second": 167.398,
501
+ "eval_steps_per_second": 10.462,
502
+ "step": 3000
503
+ },
504
+ {
505
+ "epoch": 0.6998623221661312,
506
+ "grad_norm": 0.27859926223754883,
507
+ "learning_rate": 0.0003986400508986798,
508
+ "loss": 0.0906,
509
+ "step": 3050
510
+ },
511
+ {
512
+ "epoch": 0.7113354749885269,
513
+ "grad_norm": 0.3490137755870819,
514
+ "learning_rate": 0.00039665182121838716,
515
+ "loss": 0.0902,
516
+ "step": 3100
517
+ },
518
+ {
519
+ "epoch": 0.7228086278109225,
520
+ "grad_norm": 0.48625850677490234,
521
+ "learning_rate": 0.0003946635915380945,
522
+ "loss": 0.0912,
523
+ "step": 3150
524
+ },
525
+ {
526
+ "epoch": 0.7342817806333181,
527
+ "grad_norm": 0.3152211904525757,
528
+ "learning_rate": 0.00039267536185780185,
529
+ "loss": 0.0877,
530
+ "step": 3200
531
+ },
532
+ {
533
+ "epoch": 0.7457549334557136,
534
+ "grad_norm": 0.39225655794143677,
535
+ "learning_rate": 0.0003906871321775092,
536
+ "loss": 0.0935,
537
+ "step": 3250
538
+ },
539
+ {
540
+ "epoch": 0.7572280862781092,
541
+ "grad_norm": 0.29573819041252136,
542
+ "learning_rate": 0.00038869890249721654,
543
+ "loss": 0.0945,
544
+ "step": 3300
545
+ },
546
+ {
547
+ "epoch": 0.7687012391005048,
548
+ "grad_norm": 0.33124953508377075,
549
+ "learning_rate": 0.00038671067281692377,
550
+ "loss": 0.0893,
551
+ "step": 3350
552
+ },
553
+ {
554
+ "epoch": 0.7801743919229004,
555
+ "grad_norm": 0.32787060737609863,
556
+ "learning_rate": 0.0003847224431366311,
557
+ "loss": 0.0851,
558
+ "step": 3400
559
+ },
560
+ {
561
+ "epoch": 0.791647544745296,
562
+ "grad_norm": 0.28153640031814575,
563
+ "learning_rate": 0.00038273421345633846,
564
+ "loss": 0.0809,
565
+ "step": 3450
566
+ },
567
+ {
568
+ "epoch": 0.8031206975676916,
569
+ "grad_norm": 0.16959865391254425,
570
+ "learning_rate": 0.0003807459837760458,
571
+ "loss": 0.0863,
572
+ "step": 3500
573
+ },
574
+ {
575
+ "epoch": 0.8031206975676916,
576
+ "eval_accuracy": 0.9710864457268696,
577
+ "eval_f1": 0.93562115593739,
578
+ "eval_loss": 0.08447056263685226,
579
+ "eval_precision": 0.9258313586536397,
580
+ "eval_recall": 0.9499548983029477,
581
+ "eval_runtime": 118.7686,
582
+ "eval_samples_per_second": 167.721,
583
+ "eval_steps_per_second": 10.483,
584
+ "step": 3500
585
+ },
586
+ {
587
+ "epoch": 0.8145938503900872,
588
+ "grad_norm": 0.25350427627563477,
589
+ "learning_rate": 0.00037875775409575315,
590
+ "loss": 0.0911,
591
+ "step": 3550
592
+ },
593
+ {
594
+ "epoch": 0.8260670032124828,
595
+ "grad_norm": 0.265812486410141,
596
+ "learning_rate": 0.0003767695244154605,
597
+ "loss": 0.0898,
598
+ "step": 3600
599
+ },
600
+ {
601
+ "epoch": 0.8375401560348784,
602
+ "grad_norm": 0.3460964560508728,
603
+ "learning_rate": 0.00037478129473516783,
604
+ "loss": 0.0904,
605
+ "step": 3650
606
+ },
607
+ {
608
+ "epoch": 0.849013308857274,
609
+ "grad_norm": 0.2548121213912964,
610
+ "learning_rate": 0.0003727930650548751,
611
+ "loss": 0.0844,
612
+ "step": 3700
613
+ },
614
+ {
615
+ "epoch": 0.8604864616796696,
616
+ "grad_norm": 0.3280368447303772,
617
+ "learning_rate": 0.00037080483537458247,
618
+ "loss": 0.0881,
619
+ "step": 3750
620
+ },
621
+ {
622
+ "epoch": 0.8719596145020652,
623
+ "grad_norm": 0.3780980706214905,
624
+ "learning_rate": 0.0003688166056942898,
625
+ "loss": 0.0869,
626
+ "step": 3800
627
+ },
628
+ {
629
+ "epoch": 0.8834327673244607,
630
+ "grad_norm": 0.27135029435157776,
631
+ "learning_rate": 0.00036682837601399715,
632
+ "loss": 0.0889,
633
+ "step": 3850
634
+ },
635
+ {
636
+ "epoch": 0.8949059201468563,
637
+ "grad_norm": 0.25403034687042236,
638
+ "learning_rate": 0.0003648401463337045,
639
+ "loss": 0.091,
640
+ "step": 3900
641
+ },
642
+ {
643
+ "epoch": 0.9063790729692519,
644
+ "grad_norm": 0.20978939533233643,
645
+ "learning_rate": 0.00036285191665341184,
646
+ "loss": 0.0884,
647
+ "step": 3950
648
+ },
649
+ {
650
+ "epoch": 0.9178522257916475,
651
+ "grad_norm": 0.3094377815723419,
652
+ "learning_rate": 0.0003608636869731192,
653
+ "loss": 0.0874,
654
+ "step": 4000
655
+ },
656
+ {
657
+ "epoch": 0.9178522257916475,
658
+ "eval_accuracy": 0.9705721804240243,
659
+ "eval_f1": 0.933095606006577,
660
+ "eval_loss": 0.08402583748102188,
661
+ "eval_precision": 0.9196705654871365,
662
+ "eval_recall": 0.9517589661850431,
663
+ "eval_runtime": 117.7619,
664
+ "eval_samples_per_second": 169.155,
665
+ "eval_steps_per_second": 10.572,
666
+ "step": 4000
667
+ },
668
+ {
669
+ "epoch": 0.9293253786140432,
670
+ "grad_norm": 0.2958351671695709,
671
+ "learning_rate": 0.0003588754572928265,
672
+ "loss": 0.0877,
673
+ "step": 4050
674
+ },
675
+ {
676
+ "epoch": 0.9407985314364388,
677
+ "grad_norm": 0.26525843143463135,
678
+ "learning_rate": 0.00035688722761253376,
679
+ "loss": 0.0849,
680
+ "step": 4100
681
+ },
682
+ {
683
+ "epoch": 0.9522716842588343,
684
+ "grad_norm": 0.3481367826461792,
685
+ "learning_rate": 0.0003548989979322411,
686
+ "loss": 0.0874,
687
+ "step": 4150
688
+ },
689
+ {
690
+ "epoch": 0.9637448370812299,
691
+ "grad_norm": 0.28561869263648987,
692
+ "learning_rate": 0.00035291076825194845,
693
+ "loss": 0.0858,
694
+ "step": 4200
695
+ },
696
+ {
697
+ "epoch": 0.9752179899036255,
698
+ "grad_norm": 0.29354673624038696,
699
+ "learning_rate": 0.0003509225385716558,
700
+ "loss": 0.0832,
701
+ "step": 4250
702
+ },
703
+ {
704
+ "epoch": 0.9866911427260211,
705
+ "grad_norm": 0.2132130116224289,
706
+ "learning_rate": 0.00034893430889136313,
707
+ "loss": 0.0848,
708
+ "step": 4300
709
+ },
710
+ {
711
+ "epoch": 0.9981642955484167,
712
+ "grad_norm": 0.3773078918457031,
713
+ "learning_rate": 0.0003469460792110705,
714
+ "loss": 0.084,
715
+ "step": 4350
716
+ },
717
+ {
718
+ "epoch": 1.0096374483708124,
719
+ "grad_norm": 0.2106359899044037,
720
+ "learning_rate": 0.0003449578495307778,
721
+ "loss": 0.0847,
722
+ "step": 4400
723
+ },
724
+ {
725
+ "epoch": 1.0211106011932078,
726
+ "grad_norm": 0.32030966877937317,
727
+ "learning_rate": 0.0003429696198504851,
728
+ "loss": 0.0865,
729
+ "step": 4450
730
+ },
731
+ {
732
+ "epoch": 1.0325837540156035,
733
+ "grad_norm": 0.22732515633106232,
734
+ "learning_rate": 0.00034098139017019245,
735
+ "loss": 0.0789,
736
+ "step": 4500
737
+ },
738
+ {
739
+ "epoch": 1.0325837540156035,
740
+ "eval_accuracy": 0.9716784243117108,
741
+ "eval_f1": 0.9380768901857637,
742
+ "eval_loss": 0.08132949471473694,
743
+ "eval_precision": 0.9318431066870271,
744
+ "eval_recall": 0.9486988402882629,
745
+ "eval_runtime": 119.6134,
746
+ "eval_samples_per_second": 166.536,
747
+ "eval_steps_per_second": 10.409,
748
+ "step": 4500
749
+ },
750
+ {
751
+ "epoch": 1.044056906837999,
752
+ "grad_norm": 0.28138020634651184,
753
+ "learning_rate": 0.0003389931604898998,
754
+ "loss": 0.0833,
755
+ "step": 4550
756
+ },
757
+ {
758
+ "epoch": 1.0555300596603947,
759
+ "grad_norm": 0.4682922959327698,
760
+ "learning_rate": 0.00033700493080960714,
761
+ "loss": 0.0747,
762
+ "step": 4600
763
+ },
764
+ {
765
+ "epoch": 1.0670032124827902,
766
+ "grad_norm": 0.2394658625125885,
767
+ "learning_rate": 0.0003350167011293145,
768
+ "loss": 0.0901,
769
+ "step": 4650
770
+ },
771
+ {
772
+ "epoch": 1.0784763653051859,
773
+ "grad_norm": 0.20465607941150665,
774
+ "learning_rate": 0.0003330284714490218,
775
+ "loss": 0.08,
776
+ "step": 4700
777
+ },
778
+ {
779
+ "epoch": 1.0899495181275816,
780
+ "grad_norm": 0.1981644332408905,
781
+ "learning_rate": 0.00033104024176872917,
782
+ "loss": 0.0882,
783
+ "step": 4750
784
+ },
785
+ {
786
+ "epoch": 1.101422670949977,
787
+ "grad_norm": 0.2882890999317169,
788
+ "learning_rate": 0.00032905201208843646,
789
+ "loss": 0.0847,
790
+ "step": 4800
791
+ },
792
+ {
793
+ "epoch": 1.1128958237723727,
794
+ "grad_norm": 0.32356107234954834,
795
+ "learning_rate": 0.00032706378240814375,
796
+ "loss": 0.0904,
797
+ "step": 4850
798
+ },
799
+ {
800
+ "epoch": 1.1243689765947682,
801
+ "grad_norm": 0.2824298143386841,
802
+ "learning_rate": 0.0003250755527278511,
803
+ "loss": 0.0808,
804
+ "step": 4900
805
+ },
806
+ {
807
+ "epoch": 1.135842129417164,
808
+ "grad_norm": 0.4001295268535614,
809
+ "learning_rate": 0.00032308732304755844,
810
+ "loss": 0.0772,
811
+ "step": 4950
812
+ },
813
+ {
814
+ "epoch": 1.1473152822395594,
815
+ "grad_norm": 0.3055209815502167,
816
+ "learning_rate": 0.0003210990933672658,
817
+ "loss": 0.0825,
818
+ "step": 5000
819
+ },
820
+ {
821
+ "epoch": 1.1473152822395594,
822
+ "eval_accuracy": 0.9722970875777192,
823
+ "eval_f1": 0.9379456924855788,
824
+ "eval_loss": 0.08106915652751923,
825
+ "eval_precision": 0.9298989900295542,
826
+ "eval_recall": 0.9480877850378757,
827
+ "eval_runtime": 117.2311,
828
+ "eval_samples_per_second": 169.921,
829
+ "eval_steps_per_second": 10.62,
830
+ "step": 5000
831
+ },
832
+ {
833
+ "epoch": 1.158788435061955,
834
+ "grad_norm": 0.21581706404685974,
835
+ "learning_rate": 0.0003191108636869731,
836
+ "loss": 0.0785,
837
+ "step": 5050
838
+ },
839
+ {
840
+ "epoch": 1.1702615878843505,
841
+ "grad_norm": 0.21193784475326538,
842
+ "learning_rate": 0.00031712263400668047,
843
+ "loss": 0.084,
844
+ "step": 5100
845
+ },
846
+ {
847
+ "epoch": 1.1817347407067462,
848
+ "grad_norm": 0.22416283190250397,
849
+ "learning_rate": 0.0003151344043263878,
850
+ "loss": 0.0803,
851
+ "step": 5150
852
+ },
853
+ {
854
+ "epoch": 1.193207893529142,
855
+ "grad_norm": 0.20190711319446564,
856
+ "learning_rate": 0.00031314617464609515,
857
+ "loss": 0.0826,
858
+ "step": 5200
859
+ },
860
+ {
861
+ "epoch": 1.2046810463515374,
862
+ "grad_norm": 0.27103227376937866,
863
+ "learning_rate": 0.00031115794496580244,
864
+ "loss": 0.0865,
865
+ "step": 5250
866
+ },
867
+ {
868
+ "epoch": 1.216154199173933,
869
+ "grad_norm": 0.33871927857398987,
870
+ "learning_rate": 0.0003091697152855098,
871
+ "loss": 0.0859,
872
+ "step": 5300
873
+ },
874
+ {
875
+ "epoch": 1.2276273519963286,
876
+ "grad_norm": 0.3408603370189667,
877
+ "learning_rate": 0.00030718148560521713,
878
+ "loss": 0.0812,
879
+ "step": 5350
880
+ },
881
+ {
882
+ "epoch": 1.2391005048187242,
883
+ "grad_norm": 0.22194986045360565,
884
+ "learning_rate": 0.00030519325592492447,
885
+ "loss": 0.0821,
886
+ "step": 5400
887
+ },
888
+ {
889
+ "epoch": 1.2505736576411197,
890
+ "grad_norm": 0.27335065603256226,
891
+ "learning_rate": 0.0003032050262446318,
892
+ "loss": 0.0836,
893
+ "step": 5450
894
+ },
895
+ {
896
+ "epoch": 1.2620468104635154,
897
+ "grad_norm": 0.23065054416656494,
898
+ "learning_rate": 0.00030121679656433916,
899
+ "loss": 0.0816,
900
+ "step": 5500
901
+ },
902
+ {
903
+ "epoch": 1.2620468104635154,
904
+ "eval_accuracy": 0.9727914564077644,
905
+ "eval_f1": 0.9393282739038921,
906
+ "eval_loss": 0.07892649620771408,
907
+ "eval_precision": 0.9297129712043323,
908
+ "eval_recall": 0.9530020918134762,
909
+ "eval_runtime": 120.0797,
910
+ "eval_samples_per_second": 165.89,
911
+ "eval_steps_per_second": 10.368,
912
+ "step": 5500
913
+ },
914
+ {
915
+ "epoch": 1.2735199632859109,
916
+ "grad_norm": 0.4883849620819092,
917
+ "learning_rate": 0.00029922856688404645,
918
+ "loss": 0.0853,
919
+ "step": 5550
920
+ },
921
+ {
922
+ "epoch": 1.2849931161083066,
923
+ "grad_norm": 0.28291383385658264,
924
+ "learning_rate": 0.00029724033720375374,
925
+ "loss": 0.0752,
926
+ "step": 5600
927
+ },
928
+ {
929
+ "epoch": 1.2964662689307023,
930
+ "grad_norm": 0.2305889129638672,
931
+ "learning_rate": 0.0002952521075234611,
932
+ "loss": 0.0845,
933
+ "step": 5650
934
+ },
935
+ {
936
+ "epoch": 1.3079394217530977,
937
+ "grad_norm": 0.32855790853500366,
938
+ "learning_rate": 0.0002932638778431684,
939
+ "loss": 0.0798,
940
+ "step": 5700
941
+ },
942
+ {
943
+ "epoch": 1.3194125745754932,
944
+ "grad_norm": 0.20923027396202087,
945
+ "learning_rate": 0.00029127564816287577,
946
+ "loss": 0.0782,
947
+ "step": 5750
948
+ },
949
+ {
950
+ "epoch": 1.330885727397889,
951
+ "grad_norm": 0.28620150685310364,
952
+ "learning_rate": 0.0002892874184825831,
953
+ "loss": 0.085,
954
+ "step": 5800
955
+ },
956
+ {
957
+ "epoch": 1.3423588802202846,
958
+ "grad_norm": 0.2952438294887543,
959
+ "learning_rate": 0.00028729918880229045,
960
+ "loss": 0.0837,
961
+ "step": 5850
962
+ },
963
+ {
964
+ "epoch": 1.35383203304268,
965
+ "grad_norm": 0.34050026535987854,
966
+ "learning_rate": 0.0002853109591219978,
967
+ "loss": 0.0808,
968
+ "step": 5900
969
+ },
970
+ {
971
+ "epoch": 1.3653051858650758,
972
+ "grad_norm": 0.2680424451828003,
973
+ "learning_rate": 0.00028332272944170514,
974
+ "loss": 0.081,
975
+ "step": 5950
976
+ },
977
+ {
978
+ "epoch": 1.3767783386874712,
979
+ "grad_norm": 0.2738819718360901,
980
+ "learning_rate": 0.00028133449976141243,
981
+ "loss": 0.0723,
982
+ "step": 6000
983
+ },
984
+ {
985
+ "epoch": 1.3767783386874712,
986
+ "eval_accuracy": 0.9722467612053424,
987
+ "eval_f1": 0.9398005425243338,
988
+ "eval_loss": 0.08021672815084457,
989
+ "eval_precision": 0.9293461722001554,
990
+ "eval_recall": 0.9521032909689914,
991
+ "eval_runtime": 119.0417,
992
+ "eval_samples_per_second": 167.336,
993
+ "eval_steps_per_second": 10.459,
994
+ "step": 6000
995
+ },
996
+ {
997
+ "epoch": 1.388251491509867,
998
+ "grad_norm": 0.27307409048080444,
999
+ "learning_rate": 0.0002793462700811198,
1000
+ "loss": 0.0765,
1001
+ "step": 6050
1002
+ },
1003
+ {
1004
+ "epoch": 1.3997246443322626,
1005
+ "grad_norm": 0.32893654704093933,
1006
+ "learning_rate": 0.0002773580404008271,
1007
+ "loss": 0.0755,
1008
+ "step": 6100
1009
+ },
1010
+ {
1011
+ "epoch": 1.411197797154658,
1012
+ "grad_norm": 0.20027205348014832,
1013
+ "learning_rate": 0.00027536981072053446,
1014
+ "loss": 0.0833,
1015
+ "step": 6150
1016
+ },
1017
+ {
1018
+ "epoch": 1.4226709499770536,
1019
+ "grad_norm": 0.37896206974983215,
1020
+ "learning_rate": 0.0002733815810402418,
1021
+ "loss": 0.0773,
1022
+ "step": 6200
1023
+ },
1024
+ {
1025
+ "epoch": 1.4341441027994493,
1026
+ "grad_norm": 0.3074203431606293,
1027
+ "learning_rate": 0.0002713933513599491,
1028
+ "loss": 0.0773,
1029
+ "step": 6250
1030
+ },
1031
+ {
1032
+ "epoch": 1.445617255621845,
1033
+ "grad_norm": 0.37647494673728943,
1034
+ "learning_rate": 0.00026940512167965644,
1035
+ "loss": 0.0736,
1036
+ "step": 6300
1037
+ },
1038
+ {
1039
+ "epoch": 1.4570904084442404,
1040
+ "grad_norm": 0.28269490599632263,
1041
+ "learning_rate": 0.0002674168919993638,
1042
+ "loss": 0.0846,
1043
+ "step": 6350
1044
+ },
1045
+ {
1046
+ "epoch": 1.4685635612666361,
1047
+ "grad_norm": 0.25752097368240356,
1048
+ "learning_rate": 0.00026542866231907107,
1049
+ "loss": 0.0774,
1050
+ "step": 6400
1051
+ },
1052
+ {
1053
+ "epoch": 1.4800367140890316,
1054
+ "grad_norm": 0.2019287496805191,
1055
+ "learning_rate": 0.0002634404326387784,
1056
+ "loss": 0.0782,
1057
+ "step": 6450
1058
+ },
1059
+ {
1060
+ "epoch": 1.4915098669114273,
1061
+ "grad_norm": 0.29280802607536316,
1062
+ "learning_rate": 0.00026145220295848576,
1063
+ "loss": 0.08,
1064
+ "step": 6500
1065
+ },
1066
+ {
1067
+ "epoch": 1.4915098669114273,
1068
+ "eval_accuracy": 0.9731327394353241,
1069
+ "eval_f1": 0.9410652647060472,
1070
+ "eval_loss": 0.07659982889890671,
1071
+ "eval_precision": 0.9339469742244639,
1072
+ "eval_recall": 0.949541061942897,
1073
+ "eval_runtime": 119.2428,
1074
+ "eval_samples_per_second": 167.054,
1075
+ "eval_steps_per_second": 10.441,
1076
+ "step": 6500
1077
+ },
1078
+ {
1079
+ "epoch": 1.502983019733823,
1080
+ "grad_norm": 0.2708223760128021,
1081
+ "learning_rate": 0.0002594639732781931,
1082
+ "loss": 0.0738,
1083
+ "step": 6550
1084
+ },
1085
+ {
1086
+ "epoch": 1.5144561725562184,
1087
+ "grad_norm": 0.23474043607711792,
1088
+ "learning_rate": 0.00025747574359790044,
1089
+ "loss": 0.0765,
1090
+ "step": 6600
1091
+ },
1092
+ {
1093
+ "epoch": 1.525929325378614,
1094
+ "grad_norm": 0.2765410542488098,
1095
+ "learning_rate": 0.0002554875139176078,
1096
+ "loss": 0.0825,
1097
+ "step": 6650
1098
+ },
1099
+ {
1100
+ "epoch": 1.5374024782010096,
1101
+ "grad_norm": 0.28831180930137634,
1102
+ "learning_rate": 0.00025349928423731513,
1103
+ "loss": 0.085,
1104
+ "step": 6700
1105
+ },
1106
+ {
1107
+ "epoch": 1.5488756310234053,
1108
+ "grad_norm": 0.2184303253889084,
1109
+ "learning_rate": 0.00025151105455702247,
1110
+ "loss": 0.0735,
1111
+ "step": 6750
1112
+ },
1113
+ {
1114
+ "epoch": 1.5603487838458008,
1115
+ "grad_norm": 0.2716689705848694,
1116
+ "learning_rate": 0.00024952282487672976,
1117
+ "loss": 0.0801,
1118
+ "step": 6800
1119
+ },
1120
+ {
1121
+ "epoch": 1.5718219366681965,
1122
+ "grad_norm": 0.21314671635627747,
1123
+ "learning_rate": 0.0002475345951964371,
1124
+ "loss": 0.0786,
1125
+ "step": 6850
1126
+ },
1127
+ {
1128
+ "epoch": 1.583295089490592,
1129
+ "grad_norm": 0.27691009640693665,
1130
+ "learning_rate": 0.00024554636551614445,
1131
+ "loss": 0.0828,
1132
+ "step": 6900
1133
+ },
1134
+ {
1135
+ "epoch": 1.5947682423129876,
1136
+ "grad_norm": 0.17883095145225525,
1137
+ "learning_rate": 0.00024355813583585176,
1138
+ "loss": 0.0774,
1139
+ "step": 6950
1140
+ },
1141
+ {
1142
+ "epoch": 1.6062413951353833,
1143
+ "grad_norm": 0.271129846572876,
1144
+ "learning_rate": 0.0002415699061555591,
1145
+ "loss": 0.0765,
1146
+ "step": 7000
1147
+ },
1148
+ {
1149
+ "epoch": 1.6062413951353833,
1150
+ "eval_accuracy": 0.9728195455458352,
1151
+ "eval_f1": 0.9411493302318824,
1152
+ "eval_loss": 0.07761505246162415,
1153
+ "eval_precision": 0.9323404680064952,
1154
+ "eval_recall": 0.9529729939444102,
1155
+ "eval_runtime": 119.0526,
1156
+ "eval_samples_per_second": 167.321,
1157
+ "eval_steps_per_second": 10.458,
1158
+ "step": 7000
1159
+ },
1160
+ {
1161
+ "epoch": 1.6177145479577788,
1162
+ "grad_norm": 0.291202187538147,
1163
+ "learning_rate": 0.00023958167647526642,
1164
+ "loss": 0.0805,
1165
+ "step": 7050
1166
+ },
1167
+ {
1168
+ "epoch": 1.6291877007801743,
1169
+ "grad_norm": 0.34442946314811707,
1170
+ "learning_rate": 0.00023759344679497377,
1171
+ "loss": 0.0793,
1172
+ "step": 7100
1173
+ },
1174
+ {
1175
+ "epoch": 1.64066085360257,
1176
+ "grad_norm": 0.259473592042923,
1177
+ "learning_rate": 0.00023560521711468108,
1178
+ "loss": 0.0796,
1179
+ "step": 7150
1180
+ },
1181
+ {
1182
+ "epoch": 1.6521340064249657,
1183
+ "grad_norm": 0.2742938697338104,
1184
+ "learning_rate": 0.00023361698743438843,
1185
+ "loss": 0.0736,
1186
+ "step": 7200
1187
+ },
1188
+ {
1189
+ "epoch": 1.6636071592473611,
1190
+ "grad_norm": 0.2515215575695038,
1191
+ "learning_rate": 0.00023162875775409574,
1192
+ "loss": 0.0795,
1193
+ "step": 7250
1194
+ },
1195
+ {
1196
+ "epoch": 1.6750803120697566,
1197
+ "grad_norm": 0.25539901852607727,
1198
+ "learning_rate": 0.0002296405280738031,
1199
+ "loss": 0.0717,
1200
+ "step": 7300
1201
+ },
1202
+ {
1203
+ "epoch": 1.6865534648921523,
1204
+ "grad_norm": 0.3502283990383148,
1205
+ "learning_rate": 0.00022765229839351043,
1206
+ "loss": 0.0747,
1207
+ "step": 7350
1208
+ },
1209
+ {
1210
+ "epoch": 1.698026617714548,
1211
+ "grad_norm": 0.33969902992248535,
1212
+ "learning_rate": 0.00022566406871321777,
1213
+ "loss": 0.0756,
1214
+ "step": 7400
1215
+ },
1216
+ {
1217
+ "epoch": 1.7094997705369437,
1218
+ "grad_norm": 0.25111883878707886,
1219
+ "learning_rate": 0.0002236758390329251,
1220
+ "loss": 0.0773,
1221
+ "step": 7450
1222
+ },
1223
+ {
1224
+ "epoch": 1.7209729233593392,
1225
+ "grad_norm": 0.19171655178070068,
1226
+ "learning_rate": 0.0002216876093526324,
1227
+ "loss": 0.0763,
1228
+ "step": 7500
1229
+ },
1230
+ {
1231
+ "epoch": 1.7209729233593392,
1232
+ "eval_accuracy": 0.9737420396553088,
1233
+ "eval_f1": 0.9419056166125817,
1234
+ "eval_loss": 0.07485274225473404,
1235
+ "eval_precision": 0.9380178663505828,
1236
+ "eval_recall": 0.947572106136094,
1237
+ "eval_runtime": 118.3867,
1238
+ "eval_samples_per_second": 168.262,
1239
+ "eval_steps_per_second": 10.516,
1240
+ "step": 7500
1241
+ },
1242
+ {
1243
+ "epoch": 1.7324460761817346,
1244
+ "grad_norm": 0.29894569516181946,
1245
+ "learning_rate": 0.00021969937967233975,
1246
+ "loss": 0.0801,
1247
+ "step": 7550
1248
+ },
1249
+ {
1250
+ "epoch": 1.7439192290041303,
1251
+ "grad_norm": 0.2702566981315613,
1252
+ "learning_rate": 0.0002177111499920471,
1253
+ "loss": 0.0766,
1254
+ "step": 7600
1255
+ },
1256
+ {
1257
+ "epoch": 1.755392381826526,
1258
+ "grad_norm": 0.380188912153244,
1259
+ "learning_rate": 0.0002157229203117544,
1260
+ "loss": 0.0784,
1261
+ "step": 7650
1262
+ },
1263
+ {
1264
+ "epoch": 1.7668655346489215,
1265
+ "grad_norm": 0.40631330013275146,
1266
+ "learning_rate": 0.00021373469063146175,
1267
+ "loss": 0.0749,
1268
+ "step": 7700
1269
+ },
1270
+ {
1271
+ "epoch": 1.778338687471317,
1272
+ "grad_norm": 0.28044983744621277,
1273
+ "learning_rate": 0.0002117464609511691,
1274
+ "loss": 0.0728,
1275
+ "step": 7750
1276
+ },
1277
+ {
1278
+ "epoch": 1.7898118402937127,
1279
+ "grad_norm": 0.2612505853176117,
1280
+ "learning_rate": 0.00020975823127087644,
1281
+ "loss": 0.0763,
1282
+ "step": 7800
1283
+ },
1284
+ {
1285
+ "epoch": 1.8012849931161083,
1286
+ "grad_norm": 0.3105819523334503,
1287
+ "learning_rate": 0.00020777000159058373,
1288
+ "loss": 0.0796,
1289
+ "step": 7850
1290
+ },
1291
+ {
1292
+ "epoch": 1.812758145938504,
1293
+ "grad_norm": 0.19942106306552887,
1294
+ "learning_rate": 0.00020578177191029107,
1295
+ "loss": 0.078,
1296
+ "step": 7900
1297
+ },
1298
+ {
1299
+ "epoch": 1.8242312987608995,
1300
+ "grad_norm": 0.3573172986507416,
1301
+ "learning_rate": 0.00020379354222999841,
1302
+ "loss": 0.0767,
1303
+ "step": 7950
1304
+ },
1305
+ {
1306
+ "epoch": 1.835704451583295,
1307
+ "grad_norm": 0.28859594464302063,
1308
+ "learning_rate": 0.00020180531254970573,
1309
+ "loss": 0.081,
1310
+ "step": 8000
1311
+ },
1312
+ {
1313
+ "epoch": 1.835704451583295,
1314
+ "eval_accuracy": 0.9739487288962795,
1315
+ "eval_f1": 0.9433389998606067,
1316
+ "eval_loss": 0.07406344264745712,
1317
+ "eval_precision": 0.9362268776515584,
1318
+ "eval_recall": 0.9517735151195761,
1319
+ "eval_runtime": 119.11,
1320
+ "eval_samples_per_second": 167.24,
1321
+ "eval_steps_per_second": 10.453,
1322
+ "step": 8000
1323
+ },
1324
+ {
1325
+ "epoch": 1.8471776044056907,
1326
+ "grad_norm": 0.4359795153141022,
1327
+ "learning_rate": 0.00019981708286941307,
1328
+ "loss": 0.0763,
1329
+ "step": 8050
1330
+ },
1331
+ {
1332
+ "epoch": 1.8586507572280864,
1333
+ "grad_norm": 0.3242838382720947,
1334
+ "learning_rate": 0.00019782885318912042,
1335
+ "loss": 0.0724,
1336
+ "step": 8100
1337
+ },
1338
+ {
1339
+ "epoch": 1.8701239100504818,
1340
+ "grad_norm": 0.2099728137254715,
1341
+ "learning_rate": 0.00019584062350882776,
1342
+ "loss": 0.0786,
1343
+ "step": 8150
1344
+ },
1345
+ {
1346
+ "epoch": 1.8815970628728773,
1347
+ "grad_norm": 0.2423078864812851,
1348
+ "learning_rate": 0.00019385239382853508,
1349
+ "loss": 0.0721,
1350
+ "step": 8200
1351
+ },
1352
+ {
1353
+ "epoch": 1.893070215695273,
1354
+ "grad_norm": 0.3431580364704132,
1355
+ "learning_rate": 0.0001918641641482424,
1356
+ "loss": 0.0832,
1357
+ "step": 8250
1358
+ },
1359
+ {
1360
+ "epoch": 1.9045433685176687,
1361
+ "grad_norm": 0.1967107057571411,
1362
+ "learning_rate": 0.00018987593446794974,
1363
+ "loss": 0.0767,
1364
+ "step": 8300
1365
+ },
1366
+ {
1367
+ "epoch": 1.9160165213400644,
1368
+ "grad_norm": 0.28923261165618896,
1369
+ "learning_rate": 0.00018788770478765708,
1370
+ "loss": 0.0747,
1371
+ "step": 8350
1372
+ },
1373
+ {
1374
+ "epoch": 1.9274896741624599,
1375
+ "grad_norm": 0.2539917826652527,
1376
+ "learning_rate": 0.0001858994751073644,
1377
+ "loss": 0.0805,
1378
+ "step": 8400
1379
+ },
1380
+ {
1381
+ "epoch": 1.9389628269848553,
1382
+ "grad_norm": 0.2369006723165512,
1383
+ "learning_rate": 0.00018391124542707174,
1384
+ "loss": 0.0712,
1385
+ "step": 8450
1386
+ },
1387
+ {
1388
+ "epoch": 1.950435979807251,
1389
+ "grad_norm": 0.31666308641433716,
1390
+ "learning_rate": 0.00018192301574677908,
1391
+ "loss": 0.0763,
1392
+ "step": 8500
1393
+ },
1394
+ {
1395
+ "epoch": 1.950435979807251,
1396
+ "eval_accuracy": 0.9740484453364306,
1397
+ "eval_f1": 0.9422648085299441,
1398
+ "eval_loss": 0.07338932156562805,
1399
+ "eval_precision": 0.9361482440420985,
1400
+ "eval_recall": 0.9501505006450027,
1401
+ "eval_runtime": 118.5531,
1402
+ "eval_samples_per_second": 168.026,
1403
+ "eval_steps_per_second": 10.502,
1404
+ "step": 8500
1405
+ },
1406
+ {
1407
+ "epoch": 1.9619091326296467,
1408
+ "grad_norm": 0.21725589036941528,
1409
+ "learning_rate": 0.00017993478606648643,
1410
+ "loss": 0.0844,
1411
+ "step": 8550
1412
+ },
1413
+ {
1414
+ "epoch": 1.9733822854520422,
1415
+ "grad_norm": 0.2819405198097229,
1416
+ "learning_rate": 0.00017794655638619372,
1417
+ "loss": 0.0759,
1418
+ "step": 8600
1419
+ },
1420
+ {
1421
+ "epoch": 1.9848554382744377,
1422
+ "grad_norm": 0.2227209508419037,
1423
+ "learning_rate": 0.00017595832670590106,
1424
+ "loss": 0.0717,
1425
+ "step": 8650
1426
+ },
1427
+ {
1428
+ "epoch": 1.9963285910968334,
1429
+ "grad_norm": 0.2700563073158264,
1430
+ "learning_rate": 0.0001739700970256084,
1431
+ "loss": 0.0765,
1432
+ "step": 8700
1433
+ },
1434
+ {
1435
+ "epoch": 2.007801743919229,
1436
+ "grad_norm": 0.34059178829193115,
1437
+ "learning_rate": 0.00017198186734531575,
1438
+ "loss": 0.0742,
1439
+ "step": 8750
1440
+ },
1441
+ {
1442
+ "epoch": 2.0192748967416247,
1443
+ "grad_norm": 0.2557748258113861,
1444
+ "learning_rate": 0.00016999363766502306,
1445
+ "loss": 0.0713,
1446
+ "step": 8800
1447
+ },
1448
+ {
1449
+ "epoch": 2.03074804956402,
1450
+ "grad_norm": 0.31445449590682983,
1451
+ "learning_rate": 0.0001680054079847304,
1452
+ "loss": 0.0747,
1453
+ "step": 8850
1454
+ },
1455
+ {
1456
+ "epoch": 2.0422212023864157,
1457
+ "grad_norm": 0.3940103352069855,
1458
+ "learning_rate": 0.00016601717830443775,
1459
+ "loss": 0.0706,
1460
+ "step": 8900
1461
+ },
1462
+ {
1463
+ "epoch": 2.0536943552088114,
1464
+ "grad_norm": 0.27769824862480164,
1465
+ "learning_rate": 0.00016402894862414507,
1466
+ "loss": 0.0718,
1467
+ "step": 8950
1468
+ },
1469
+ {
1470
+ "epoch": 2.065167508031207,
1471
+ "grad_norm": 0.28729698061943054,
1472
+ "learning_rate": 0.00016204071894385238,
1473
+ "loss": 0.073,
1474
+ "step": 9000
1475
+ },
1476
+ {
1477
+ "epoch": 2.065167508031207,
1478
+ "eval_accuracy": 0.974420158263567,
1479
+ "eval_f1": 0.9445772525431679,
1480
+ "eval_loss": 0.07281184196472168,
1481
+ "eval_precision": 0.9397438689480371,
1482
+ "eval_recall": 0.9504560282701964,
1483
+ "eval_runtime": 117.3567,
1484
+ "eval_samples_per_second": 169.739,
1485
+ "eval_steps_per_second": 10.609,
1486
+ "step": 9000
1487
+ },
1488
+ {
1489
+ "epoch": 2.0766406608536028,
1490
+ "grad_norm": 0.267760306596756,
1491
+ "learning_rate": 0.00016005248926355973,
1492
+ "loss": 0.0668,
1493
+ "step": 9050
1494
+ },
1495
+ {
1496
+ "epoch": 2.088113813675998,
1497
+ "grad_norm": 0.16492970287799835,
1498
+ "learning_rate": 0.00015806425958326707,
1499
+ "loss": 0.0676,
1500
+ "step": 9100
1501
+ },
1502
+ {
1503
+ "epoch": 2.0995869664983937,
1504
+ "grad_norm": 0.20092828571796417,
1505
+ "learning_rate": 0.00015607602990297438,
1506
+ "loss": 0.0675,
1507
+ "step": 9150
1508
+ },
1509
+ {
1510
+ "epoch": 2.1110601193207894,
1511
+ "grad_norm": 0.17862418293952942,
1512
+ "learning_rate": 0.00015408780022268173,
1513
+ "loss": 0.07,
1514
+ "step": 9200
1515
+ },
1516
+ {
1517
+ "epoch": 2.122533272143185,
1518
+ "grad_norm": 0.264687716960907,
1519
+ "learning_rate": 0.00015209957054238907,
1520
+ "loss": 0.0721,
1521
+ "step": 9250
1522
+ },
1523
+ {
1524
+ "epoch": 2.1340064249655804,
1525
+ "grad_norm": 0.18594799935817719,
1526
+ "learning_rate": 0.0001501113408620964,
1527
+ "loss": 0.0708,
1528
+ "step": 9300
1529
+ },
1530
+ {
1531
+ "epoch": 2.145479577787976,
1532
+ "grad_norm": 0.23833034932613373,
1533
+ "learning_rate": 0.0001481231111818037,
1534
+ "loss": 0.075,
1535
+ "step": 9350
1536
+ },
1537
+ {
1538
+ "epoch": 2.1569527306103717,
1539
+ "grad_norm": 0.2754266858100891,
1540
+ "learning_rate": 0.00014613488150151105,
1541
+ "loss": 0.0663,
1542
+ "step": 9400
1543
+ },
1544
+ {
1545
+ "epoch": 2.1684258834327674,
1546
+ "grad_norm": 0.24011731147766113,
1547
+ "learning_rate": 0.0001441466518212184,
1548
+ "loss": 0.0711,
1549
+ "step": 9450
1550
+ },
1551
+ {
1552
+ "epoch": 2.179899036255163,
1553
+ "grad_norm": 0.2121812105178833,
1554
+ "learning_rate": 0.00014215842214092573,
1555
+ "loss": 0.0706,
1556
+ "step": 9500
1557
+ },
1558
+ {
1559
+ "epoch": 2.179899036255163,
1560
+ "eval_accuracy": 0.9745226836175251,
1561
+ "eval_f1": 0.944122628074362,
1562
+ "eval_loss": 0.07175323367118835,
1563
+ "eval_precision": 0.938023404048986,
1564
+ "eval_recall": 0.9516652063847191,
1565
+ "eval_runtime": 119.8057,
1566
+ "eval_samples_per_second": 166.269,
1567
+ "eval_steps_per_second": 10.392,
1568
+ "step": 9500
1569
+ },
1570
+ {
1571
+ "epoch": 2.1913721890775584,
1572
+ "grad_norm": 0.22729764878749847,
1573
+ "learning_rate": 0.00014017019246063305,
1574
+ "loss": 0.0693,
1575
+ "step": 9550
1576
+ },
1577
+ {
1578
+ "epoch": 2.202845341899954,
1579
+ "grad_norm": 0.432969868183136,
1580
+ "learning_rate": 0.0001381819627803404,
1581
+ "loss": 0.0727,
1582
+ "step": 9600
1583
+ },
1584
+ {
1585
+ "epoch": 2.2143184947223498,
1586
+ "grad_norm": 0.28356945514678955,
1587
+ "learning_rate": 0.00013619373310004774,
1588
+ "loss": 0.0686,
1589
+ "step": 9650
1590
+ },
1591
+ {
1592
+ "epoch": 2.2257916475447455,
1593
+ "grad_norm": 0.2591719329357147,
1594
+ "learning_rate": 0.00013420550341975505,
1595
+ "loss": 0.0719,
1596
+ "step": 9700
1597
+ },
1598
+ {
1599
+ "epoch": 2.2372648003671407,
1600
+ "grad_norm": 0.18898649513721466,
1601
+ "learning_rate": 0.00013221727373946237,
1602
+ "loss": 0.074,
1603
+ "step": 9750
1604
+ },
1605
+ {
1606
+ "epoch": 2.2487379531895364,
1607
+ "grad_norm": 0.230307474732399,
1608
+ "learning_rate": 0.0001302290440591697,
1609
+ "loss": 0.0636,
1610
+ "step": 9800
1611
+ },
1612
+ {
1613
+ "epoch": 2.260211106011932,
1614
+ "grad_norm": 0.21404670178890228,
1615
+ "learning_rate": 0.00012824081437887706,
1616
+ "loss": 0.0707,
1617
+ "step": 9850
1618
+ },
1619
+ {
1620
+ "epoch": 2.271684258834328,
1621
+ "grad_norm": 0.182530015707016,
1622
+ "learning_rate": 0.0001262525846985844,
1623
+ "loss": 0.0728,
1624
+ "step": 9900
1625
+ },
1626
+ {
1627
+ "epoch": 2.283157411656723,
1628
+ "grad_norm": 0.31098031997680664,
1629
+ "learning_rate": 0.00012426435501829172,
1630
+ "loss": 0.0666,
1631
+ "step": 9950
1632
+ },
1633
+ {
1634
+ "epoch": 2.2946305644791187,
1635
+ "grad_norm": 0.22960515320301056,
1636
+ "learning_rate": 0.00012227612533799906,
1637
+ "loss": 0.0717,
1638
+ "step": 10000
1639
+ },
1640
+ {
1641
+ "epoch": 2.2946305644791187,
1642
+ "eval_accuracy": 0.9739419406879124,
1643
+ "eval_f1": 0.9426748850468422,
1644
+ "eval_loss": 0.07281766831874847,
1645
+ "eval_precision": 0.932625711260672,
1646
+ "eval_recall": 0.9557954872438175,
1647
+ "eval_runtime": 117.3059,
1648
+ "eval_samples_per_second": 169.812,
1649
+ "eval_steps_per_second": 10.613,
1650
+ "step": 10000
1651
+ },
1652
+ {
1653
+ "epoch": 2.3061037173015144,
1654
+ "grad_norm": 0.23993970453739166,
1655
+ "learning_rate": 0.00012028789565770639,
1656
+ "loss": 0.0675,
1657
+ "step": 10050
1658
+ },
1659
+ {
1660
+ "epoch": 2.31757687012391,
1661
+ "grad_norm": 0.23594702780246735,
1662
+ "learning_rate": 0.00011829966597741372,
1663
+ "loss": 0.0671,
1664
+ "step": 10100
1665
+ },
1666
+ {
1667
+ "epoch": 2.329050022946306,
1668
+ "grad_norm": 0.4768570065498352,
1669
+ "learning_rate": 0.00011631143629712105,
1670
+ "loss": 0.0714,
1671
+ "step": 10150
1672
+ },
1673
+ {
1674
+ "epoch": 2.340523175768701,
1675
+ "grad_norm": 0.37876570224761963,
1676
+ "learning_rate": 0.00011432320661682838,
1677
+ "loss": 0.0661,
1678
+ "step": 10200
1679
+ },
1680
+ {
1681
+ "epoch": 2.3519963285910968,
1682
+ "grad_norm": 0.2580972909927368,
1683
+ "learning_rate": 0.00011233497693653571,
1684
+ "loss": 0.0696,
1685
+ "step": 10250
1686
+ },
1687
+ {
1688
+ "epoch": 2.3634694814134924,
1689
+ "grad_norm": 0.20318330824375153,
1690
+ "learning_rate": 0.00011034674725624304,
1691
+ "loss": 0.0688,
1692
+ "step": 10300
1693
+ },
1694
+ {
1695
+ "epoch": 2.374942634235888,
1696
+ "grad_norm": 0.2656238079071045,
1697
+ "learning_rate": 0.00010835851757595037,
1698
+ "loss": 0.0656,
1699
+ "step": 10350
1700
+ },
1701
+ {
1702
+ "epoch": 2.386415787058284,
1703
+ "grad_norm": 0.2967742085456848,
1704
+ "learning_rate": 0.00010637028789565771,
1705
+ "loss": 0.0768,
1706
+ "step": 10400
1707
+ },
1708
+ {
1709
+ "epoch": 2.397888939880679,
1710
+ "grad_norm": 0.22500257194042206,
1711
+ "learning_rate": 0.00010438205821536504,
1712
+ "loss": 0.0671,
1713
+ "step": 10450
1714
+ },
1715
+ {
1716
+ "epoch": 2.4093620927030748,
1717
+ "grad_norm": 0.3866559863090515,
1718
+ "learning_rate": 0.00010239382853507237,
1719
+ "loss": 0.0712,
1720
+ "step": 10500
1721
+ },
1722
+ {
1723
+ "epoch": 2.4093620927030748,
1724
+ "eval_accuracy": 0.9745250243790311,
1725
+ "eval_f1": 0.9449194759736153,
1726
+ "eval_loss": 0.0714457556605339,
1727
+ "eval_precision": 0.9347134332940459,
1728
+ "eval_recall": 0.9574427499426126,
1729
+ "eval_runtime": 113.4582,
1730
+ "eval_samples_per_second": 175.571,
1731
+ "eval_steps_per_second": 10.973,
1732
+ "step": 10500
1733
+ },
1734
+ {
1735
+ "epoch": 2.4208352455254705,
1736
+ "grad_norm": 0.2979605495929718,
1737
+ "learning_rate": 0.0001004055988547797,
1738
+ "loss": 0.0679,
1739
+ "step": 10550
1740
+ },
1741
+ {
1742
+ "epoch": 2.432308398347866,
1743
+ "grad_norm": 0.3229621946811676,
1744
+ "learning_rate": 9.841736917448704e-05,
1745
+ "loss": 0.0707,
1746
+ "step": 10600
1747
+ },
1748
+ {
1749
+ "epoch": 2.4437815511702614,
1750
+ "grad_norm": 0.26730015873908997,
1751
+ "learning_rate": 9.642913949419436e-05,
1752
+ "loss": 0.0655,
1753
+ "step": 10650
1754
+ },
1755
+ {
1756
+ "epoch": 2.455254703992657,
1757
+ "grad_norm": 0.3086176812648773,
1758
+ "learning_rate": 9.44409098139017e-05,
1759
+ "loss": 0.0739,
1760
+ "step": 10700
1761
+ },
1762
+ {
1763
+ "epoch": 2.466727856815053,
1764
+ "grad_norm": 0.3094359040260315,
1765
+ "learning_rate": 9.245268013360903e-05,
1766
+ "loss": 0.0717,
1767
+ "step": 10750
1768
+ },
1769
+ {
1770
+ "epoch": 2.4782010096374485,
1771
+ "grad_norm": 0.20422030985355377,
1772
+ "learning_rate": 9.046445045331638e-05,
1773
+ "loss": 0.0691,
1774
+ "step": 10800
1775
+ },
1776
+ {
1777
+ "epoch": 2.4896741624598437,
1778
+ "grad_norm": 0.32366958260536194,
1779
+ "learning_rate": 8.84762207730237e-05,
1780
+ "loss": 0.068,
1781
+ "step": 10850
1782
+ },
1783
+ {
1784
+ "epoch": 2.5011473152822394,
1785
+ "grad_norm": 0.21282616257667542,
1786
+ "learning_rate": 8.648799109273104e-05,
1787
+ "loss": 0.0747,
1788
+ "step": 10900
1789
+ },
1790
+ {
1791
+ "epoch": 2.512620468104635,
1792
+ "grad_norm": 0.24280066788196564,
1793
+ "learning_rate": 8.449976141243837e-05,
1794
+ "loss": 0.0676,
1795
+ "step": 10950
1796
+ },
1797
+ {
1798
+ "epoch": 2.524093620927031,
1799
+ "grad_norm": 0.25853705406188965,
1800
+ "learning_rate": 8.251153173214571e-05,
1801
+ "loss": 0.0658,
1802
+ "step": 11000
1803
+ },
1804
+ {
1805
+ "epoch": 2.524093620927031,
1806
+ "eval_accuracy": 0.9746734286585049,
1807
+ "eval_f1": 0.9448772381464688,
1808
+ "eval_loss": 0.07095114141702652,
1809
+ "eval_precision": 0.9373394177599341,
1810
+ "eval_recall": 0.9540754798723573,
1811
+ "eval_runtime": 115.6195,
1812
+ "eval_samples_per_second": 172.289,
1813
+ "eval_steps_per_second": 10.768,
1814
+ "step": 11000
1815
+ },
1816
+ {
1817
+ "epoch": 2.5355667737494265,
1818
+ "grad_norm": 0.2284245491027832,
1819
+ "learning_rate": 8.052330205185303e-05,
1820
+ "loss": 0.0743,
1821
+ "step": 11050
1822
+ },
1823
+ {
1824
+ "epoch": 2.5470399265718218,
1825
+ "grad_norm": 0.19337309896945953,
1826
+ "learning_rate": 7.853507237156037e-05,
1827
+ "loss": 0.0676,
1828
+ "step": 11100
1829
+ },
1830
+ {
1831
+ "epoch": 2.5585130793942175,
1832
+ "grad_norm": 0.22750115394592285,
1833
+ "learning_rate": 7.65468426912677e-05,
1834
+ "loss": 0.0723,
1835
+ "step": 11150
1836
+ },
1837
+ {
1838
+ "epoch": 2.569986232216613,
1839
+ "grad_norm": 0.2701912820339203,
1840
+ "learning_rate": 7.455861301097503e-05,
1841
+ "loss": 0.0675,
1842
+ "step": 11200
1843
+ },
1844
+ {
1845
+ "epoch": 2.581459385039009,
1846
+ "grad_norm": 0.22987499833106995,
1847
+ "learning_rate": 7.257038333068236e-05,
1848
+ "loss": 0.065,
1849
+ "step": 11250
1850
+ },
1851
+ {
1852
+ "epoch": 2.5929325378614045,
1853
+ "grad_norm": 0.20396412909030914,
1854
+ "learning_rate": 7.05821536503897e-05,
1855
+ "loss": 0.0665,
1856
+ "step": 11300
1857
+ },
1858
+ {
1859
+ "epoch": 2.6044056906838,
1860
+ "grad_norm": 0.17404744029045105,
1861
+ "learning_rate": 6.859392397009703e-05,
1862
+ "loss": 0.0626,
1863
+ "step": 11350
1864
+ },
1865
+ {
1866
+ "epoch": 2.6158788435061955,
1867
+ "grad_norm": 0.24504683911800385,
1868
+ "learning_rate": 6.660569428980435e-05,
1869
+ "loss": 0.0715,
1870
+ "step": 11400
1871
+ },
1872
+ {
1873
+ "epoch": 2.627351996328591,
1874
+ "grad_norm": 0.29088979959487915,
1875
+ "learning_rate": 6.461746460951169e-05,
1876
+ "loss": 0.0634,
1877
+ "step": 11450
1878
+ },
1879
+ {
1880
+ "epoch": 2.6388251491509864,
1881
+ "grad_norm": 0.24859917163848877,
1882
+ "learning_rate": 6.262923492921902e-05,
1883
+ "loss": 0.0718,
1884
+ "step": 11500
1885
+ },
1886
+ {
1887
+ "epoch": 2.6388251491509864,
1888
+ "eval_accuracy": 0.9750416304433823,
1889
+ "eval_f1": 0.9463313377336133,
1890
+ "eval_loss": 0.06995302438735962,
1891
+ "eval_precision": 0.937154559060786,
1892
+ "eval_recall": 0.9573328246594741,
1893
+ "eval_runtime": 116.2346,
1894
+ "eval_samples_per_second": 171.378,
1895
+ "eval_steps_per_second": 10.711,
1896
+ "step": 11500
1897
+ },
1898
+ {
1899
+ "epoch": 2.650298301973382,
1900
+ "grad_norm": 0.38858455419540405,
1901
+ "learning_rate": 6.064100524892636e-05,
1902
+ "loss": 0.0677,
1903
+ "step": 11550
1904
+ },
1905
+ {
1906
+ "epoch": 2.661771454795778,
1907
+ "grad_norm": 0.15558552742004395,
1908
+ "learning_rate": 5.865277556863369e-05,
1909
+ "loss": 0.0683,
1910
+ "step": 11600
1911
+ },
1912
+ {
1913
+ "epoch": 2.6732446076181735,
1914
+ "grad_norm": 0.2536437511444092,
1915
+ "learning_rate": 5.6664545888341025e-05,
1916
+ "loss": 0.0725,
1917
+ "step": 11650
1918
+ },
1919
+ {
1920
+ "epoch": 2.684717760440569,
1921
+ "grad_norm": 0.22305089235305786,
1922
+ "learning_rate": 5.4676316208048355e-05,
1923
+ "loss": 0.0682,
1924
+ "step": 11700
1925
+ },
1926
+ {
1927
+ "epoch": 2.6961909132629645,
1928
+ "grad_norm": 0.25250253081321716,
1929
+ "learning_rate": 5.268808652775569e-05,
1930
+ "loss": 0.0717,
1931
+ "step": 11750
1932
+ },
1933
+ {
1934
+ "epoch": 2.70766406608536,
1935
+ "grad_norm": 0.21804587543010712,
1936
+ "learning_rate": 5.069985684746302e-05,
1937
+ "loss": 0.0675,
1938
+ "step": 11800
1939
+ },
1940
+ {
1941
+ "epoch": 2.719137218907756,
1942
+ "grad_norm": 0.28288906812667847,
1943
+ "learning_rate": 4.871162716717036e-05,
1944
+ "loss": 0.0639,
1945
+ "step": 11850
1946
+ },
1947
+ {
1948
+ "epoch": 2.7306103717301515,
1949
+ "grad_norm": 0.22967451810836792,
1950
+ "learning_rate": 4.672339748687769e-05,
1951
+ "loss": 0.0674,
1952
+ "step": 11900
1953
+ },
1954
+ {
1955
+ "epoch": 2.7420835245525472,
1956
+ "grad_norm": 0.23140451312065125,
1957
+ "learning_rate": 4.473516780658501e-05,
1958
+ "loss": 0.0671,
1959
+ "step": 11950
1960
+ },
1961
+ {
1962
+ "epoch": 2.7535566773749425,
1963
+ "grad_norm": 0.32377928495407104,
1964
+ "learning_rate": 4.274693812629235e-05,
1965
+ "loss": 0.0637,
1966
+ "step": 12000
1967
+ },
1968
+ {
1969
+ "epoch": 2.7535566773749425,
1970
+ "eval_accuracy": 0.9755069738307545,
1971
+ "eval_f1": 0.9476076338095303,
1972
+ "eval_loss": 0.06893511861562729,
1973
+ "eval_precision": 0.9417873864638041,
1974
+ "eval_recall": 0.9544925493289708,
1975
+ "eval_runtime": 115.4256,
1976
+ "eval_samples_per_second": 172.579,
1977
+ "eval_steps_per_second": 10.786,
1978
+ "step": 12000
1979
+ }
1980
+ ],
1981
+ "logging_steps": 50,
1982
+ "max_steps": 13074,
1983
+ "num_input_tokens_seen": 0,
1984
+ "num_train_epochs": 3,
1985
+ "save_steps": 1000,
1986
+ "stateful_callbacks": {
1987
+ "TrainerControl": {
1988
+ "args": {
1989
+ "should_epoch_stop": false,
1990
+ "should_evaluate": false,
1991
+ "should_log": false,
1992
+ "should_save": true,
1993
+ "should_training_stop": false
1994
+ },
1995
+ "attributes": {}
1996
+ }
1997
+ },
1998
+ "total_flos": 2.878898410102747e+16,
1999
+ "train_batch_size": 16,
2000
+ "trial_name": null,
2001
+ "trial_params": null
2002
+ }
checkpoint-12000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dd103f98dee7758a7916a783307af9f65932119d66eedade7204a203817a6cc
3
+ size 5841
checkpoint-13074/README.md ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: EvanD/xlm-roberta-base-romanian-ner-ronec
3
+ library_name: peft
4
+ tags:
5
+ - base_model:adapter:EvanD/xlm-roberta-base-romanian-ner-ronec
6
+ - lora
7
+ - transformers
8
+ ---
9
+
10
+ # Model Card for Model ID
11
+
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
+
14
+
15
+
16
+ ## Model Details
17
+
18
+ ### Model Description
19
+
20
+ <!-- Provide a longer summary of what this model is. -->
21
+
22
+
23
+
24
+ - **Developed by:** [More Information Needed]
25
+ - **Funded by [optional]:** [More Information Needed]
26
+ - **Shared by [optional]:** [More Information Needed]
27
+ - **Model type:** [More Information Needed]
28
+ - **Language(s) (NLP):** [More Information Needed]
29
+ - **License:** [More Information Needed]
30
+ - **Finetuned from model [optional]:** [More Information Needed]
31
+
32
+ ### Model Sources [optional]
33
+
34
+ <!-- Provide the basic links for the model. -->
35
+
36
+ - **Repository:** [More Information Needed]
37
+ - **Paper [optional]:** [More Information Needed]
38
+ - **Demo [optional]:** [More Information Needed]
39
+
40
+ ## Uses
41
+
42
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
+
44
+ ### Direct Use
45
+
46
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
+
48
+ [More Information Needed]
49
+
50
+ ### Downstream Use [optional]
51
+
52
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
+
54
+ [More Information Needed]
55
+
56
+ ### Out-of-Scope Use
57
+
58
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
+
60
+ [More Information Needed]
61
+
62
+ ## Bias, Risks, and Limitations
63
+
64
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
+
66
+ [More Information Needed]
67
+
68
+ ### Recommendations
69
+
70
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
+
72
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
+
74
+ ## How to Get Started with the Model
75
+
76
+ Use the code below to get started with the model.
77
+
78
+ [More Information Needed]
79
+
80
+ ## Training Details
81
+
82
+ ### Training Data
83
+
84
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
+
86
+ [More Information Needed]
87
+
88
+ ### Training Procedure
89
+
90
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
+
92
+ #### Preprocessing [optional]
93
+
94
+ [More Information Needed]
95
+
96
+
97
+ #### Training Hyperparameters
98
+
99
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
+
101
+ #### Speeds, Sizes, Times [optional]
102
+
103
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
+
105
+ [More Information Needed]
106
+
107
+ ## Evaluation
108
+
109
+ <!-- This section describes the evaluation protocols and provides the results. -->
110
+
111
+ ### Testing Data, Factors & Metrics
112
+
113
+ #### Testing Data
114
+
115
+ <!-- This should link to a Dataset Card if possible. -->
116
+
117
+ [More Information Needed]
118
+
119
+ #### Factors
120
+
121
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
+
123
+ [More Information Needed]
124
+
125
+ #### Metrics
126
+
127
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
+
129
+ [More Information Needed]
130
+
131
+ ### Results
132
+
133
+ [More Information Needed]
134
+
135
+ #### Summary
136
+
137
+
138
+
139
+ ## Model Examination [optional]
140
+
141
+ <!-- Relevant interpretability work for the model goes here -->
142
+
143
+ [More Information Needed]
144
+
145
+ ## Environmental Impact
146
+
147
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
+
149
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
+
151
+ - **Hardware Type:** [More Information Needed]
152
+ - **Hours used:** [More Information Needed]
153
+ - **Cloud Provider:** [More Information Needed]
154
+ - **Compute Region:** [More Information Needed]
155
+ - **Carbon Emitted:** [More Information Needed]
156
+
157
+ ## Technical Specifications [optional]
158
+
159
+ ### Model Architecture and Objective
160
+
161
+ [More Information Needed]
162
+
163
+ ### Compute Infrastructure
164
+
165
+ [More Information Needed]
166
+
167
+ #### Hardware
168
+
169
+ [More Information Needed]
170
+
171
+ #### Software
172
+
173
+ [More Information Needed]
174
+
175
+ ## Citation [optional]
176
+
177
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
+
179
+ **BibTeX:**
180
+
181
+ [More Information Needed]
182
+
183
+ **APA:**
184
+
185
+ [More Information Needed]
186
+
187
+ ## Glossary [optional]
188
+
189
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
+
191
+ [More Information Needed]
192
+
193
+ ## More Information [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Authors [optional]
198
+
199
+ [More Information Needed]
200
+
201
+ ## Model Card Contact
202
+
203
+ [More Information Needed]
204
+ ### Framework versions
205
+
206
+ - PEFT 0.17.1
checkpoint-13074/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "EvanD/xlm-roberta-base-romanian-ner-ronec",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "classifier",
23
+ "score"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "qalora_group_size": 16,
27
+ "r": 16,
28
+ "rank_pattern": {},
29
+ "revision": null,
30
+ "target_modules": [
31
+ "dense",
32
+ "key",
33
+ "query",
34
+ "value"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "TOKEN_CLS",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-13074/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6c760fe7c57a14c48d1c0378241c4f3293589a2a52b782e4b6aad3f4bac1787
3
+ size 10899068
checkpoint-13074/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7861e7e52828953a705a399c9721b9f9efb994471ae0ab42dd782b3de7c8d1f7
3
+ size 21881739
checkpoint-13074/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8880e9ef17393ddbb046cafcd85975c8879f1fa43a507df36313395ee20382a
3
+ size 14645
checkpoint-13074/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b8e7fd99ca1ee21d46d64586227d157a8461913f02ab835e124fd93eb2a9476
3
+ size 1465
checkpoint-13074/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-13074/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8373f9cd3d27591e1924426bcc1c8799bc5a9affc4fc857982c5d66668dd1f41
3
+ size 17082832
checkpoint-13074/tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "stride": 0,
55
+ "tokenizer_class": "XLMRobertaTokenizer",
56
+ "truncation_side": "right",
57
+ "truncation_strategy": "longest_first",
58
+ "unk_token": "<unk>"
59
+ }
checkpoint-13074/trainer_state.json ADDED
@@ -0,0 +1,2173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": 12000,
3
+ "best_metric": 0.9476076338095303,
4
+ "best_model_checkpoint": "./models/financial_adapter_20250914_035417/checkpoint-12000",
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 13074,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.011473152822395595,
14
+ "grad_norm": 5.206177234649658,
15
+ "learning_rate": 4.9000000000000005e-05,
16
+ "loss": 3.7097,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.02294630564479119,
21
+ "grad_norm": 0.7576159834861755,
22
+ "learning_rate": 9.900000000000001e-05,
23
+ "loss": 1.1878,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.03441945846718678,
28
+ "grad_norm": 1.0443555116653442,
29
+ "learning_rate": 0.000149,
30
+ "loss": 0.5979,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.04589261128958238,
35
+ "grad_norm": 0.8121919631958008,
36
+ "learning_rate": 0.000199,
37
+ "loss": 0.351,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.05736576411197797,
42
+ "grad_norm": 0.5419031381607056,
43
+ "learning_rate": 0.000249,
44
+ "loss": 0.2513,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.06883891693437356,
49
+ "grad_norm": 0.969489336013794,
50
+ "learning_rate": 0.000299,
51
+ "loss": 0.2124,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.08031206975676916,
56
+ "grad_norm": 0.7236778140068054,
57
+ "learning_rate": 0.00034899999999999997,
58
+ "loss": 0.1806,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.09178522257916476,
63
+ "grad_norm": 0.7271482348442078,
64
+ "learning_rate": 0.00039900000000000005,
65
+ "loss": 0.1677,
66
+ "step": 400
67
+ },
68
+ {
69
+ "epoch": 0.10325837540156035,
70
+ "grad_norm": 0.5921468734741211,
71
+ "learning_rate": 0.000449,
72
+ "loss": 0.151,
73
+ "step": 450
74
+ },
75
+ {
76
+ "epoch": 0.11473152822395594,
77
+ "grad_norm": 0.7947412729263306,
78
+ "learning_rate": 0.000499,
79
+ "loss": 0.146,
80
+ "step": 500
81
+ },
82
+ {
83
+ "epoch": 0.11473152822395594,
84
+ "eval_accuracy": 0.9611541265050512,
85
+ "eval_f1": 0.9108550122870944,
86
+ "eval_loss": 0.13393332064151764,
87
+ "eval_precision": 0.9024035519296109,
88
+ "eval_recall": 0.920942706295809,
89
+ "eval_runtime": 157.6023,
90
+ "eval_samples_per_second": 126.394,
91
+ "eval_steps_per_second": 7.9,
92
+ "step": 500
93
+ },
94
+ {
95
+ "epoch": 0.12620468104635155,
96
+ "grad_norm": 0.42396143078804016,
97
+ "learning_rate": 0.0004980515349133132,
98
+ "loss": 0.1366,
99
+ "step": 550
100
+ },
101
+ {
102
+ "epoch": 0.13767783386874713,
103
+ "grad_norm": 0.4833989441394806,
104
+ "learning_rate": 0.0004960633052330205,
105
+ "loss": 0.1306,
106
+ "step": 600
107
+ },
108
+ {
109
+ "epoch": 0.14915098669114274,
110
+ "grad_norm": 0.5300698280334473,
111
+ "learning_rate": 0.0004940750755527279,
112
+ "loss": 0.1307,
113
+ "step": 650
114
+ },
115
+ {
116
+ "epoch": 0.16062413951353832,
117
+ "grad_norm": 0.391825407743454,
118
+ "learning_rate": 0.0004920868458724352,
119
+ "loss": 0.1294,
120
+ "step": 700
121
+ },
122
+ {
123
+ "epoch": 0.1720972923359339,
124
+ "grad_norm": 0.4168291985988617,
125
+ "learning_rate": 0.0004900986161921426,
126
+ "loss": 0.1143,
127
+ "step": 750
128
+ },
129
+ {
130
+ "epoch": 0.18357044515832951,
131
+ "grad_norm": 0.48850780725479126,
132
+ "learning_rate": 0.00048811038651184986,
133
+ "loss": 0.1164,
134
+ "step": 800
135
+ },
136
+ {
137
+ "epoch": 0.1950435979807251,
138
+ "grad_norm": 0.5360251665115356,
139
+ "learning_rate": 0.0004861221568315572,
140
+ "loss": 0.1162,
141
+ "step": 850
142
+ },
143
+ {
144
+ "epoch": 0.2065167508031207,
145
+ "grad_norm": 0.35034602880477905,
146
+ "learning_rate": 0.00048413392715126454,
147
+ "loss": 0.1161,
148
+ "step": 900
149
+ },
150
+ {
151
+ "epoch": 0.2179899036255163,
152
+ "grad_norm": 0.5149801969528198,
153
+ "learning_rate": 0.0004821456974709719,
154
+ "loss": 0.1193,
155
+ "step": 950
156
+ },
157
+ {
158
+ "epoch": 0.22946305644791187,
159
+ "grad_norm": 0.28831130266189575,
160
+ "learning_rate": 0.00048015746779067923,
161
+ "loss": 0.1133,
162
+ "step": 1000
163
+ },
164
+ {
165
+ "epoch": 0.22946305644791187,
166
+ "eval_accuracy": 0.9673264805199486,
167
+ "eval_f1": 0.9251527095587492,
168
+ "eval_loss": 0.10191841423511505,
169
+ "eval_precision": 0.9235157682187369,
170
+ "eval_recall": 0.924869302071445,
171
+ "eval_runtime": 120.0892,
172
+ "eval_samples_per_second": 165.877,
173
+ "eval_steps_per_second": 10.367,
174
+ "step": 1000
175
+ },
176
+ {
177
+ "epoch": 0.24093620927030748,
178
+ "grad_norm": 0.8704720735549927,
179
+ "learning_rate": 0.0004781692381103865,
180
+ "loss": 0.1155,
181
+ "step": 1050
182
+ },
183
+ {
184
+ "epoch": 0.2524093620927031,
185
+ "grad_norm": 0.29704341292381287,
186
+ "learning_rate": 0.00047618100843009386,
187
+ "loss": 0.1067,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 0.2638825149150987,
192
+ "grad_norm": 0.3146417438983917,
193
+ "learning_rate": 0.0004741927787498012,
194
+ "loss": 0.1112,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 0.27535566773749426,
199
+ "grad_norm": 0.38349583745002747,
200
+ "learning_rate": 0.0004722045490695085,
201
+ "loss": 0.1072,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 0.28682882055988984,
206
+ "grad_norm": 0.3654622733592987,
207
+ "learning_rate": 0.00047021631938921584,
208
+ "loss": 0.1093,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 0.2983019733822855,
213
+ "grad_norm": 0.32350990176200867,
214
+ "learning_rate": 0.0004682280897089232,
215
+ "loss": 0.1003,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 0.30977512620468106,
220
+ "grad_norm": 0.4420382082462311,
221
+ "learning_rate": 0.0004662398600286305,
222
+ "loss": 0.1006,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 0.32124827902707664,
227
+ "grad_norm": 0.2918410301208496,
228
+ "learning_rate": 0.0004642516303483378,
229
+ "loss": 0.1009,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 0.3327214318494722,
234
+ "grad_norm": 0.5075766444206238,
235
+ "learning_rate": 0.00046226340066804516,
236
+ "loss": 0.1014,
237
+ "step": 1450
238
+ },
239
+ {
240
+ "epoch": 0.3441945846718678,
241
+ "grad_norm": 0.4021468460559845,
242
+ "learning_rate": 0.0004602751709877525,
243
+ "loss": 0.0978,
244
+ "step": 1500
245
+ },
246
+ {
247
+ "epoch": 0.3441945846718678,
248
+ "eval_accuracy": 0.9686035999975656,
249
+ "eval_f1": 0.9285241312222242,
250
+ "eval_loss": 0.09482518583536148,
251
+ "eval_precision": 0.9235005355255337,
252
+ "eval_recall": 0.9350632555342531,
253
+ "eval_runtime": 117.8493,
254
+ "eval_samples_per_second": 169.029,
255
+ "eval_steps_per_second": 10.564,
256
+ "step": 1500
257
+ },
258
+ {
259
+ "epoch": 0.35566773749426345,
260
+ "grad_norm": 0.41242897510528564,
261
+ "learning_rate": 0.00045828694130745984,
262
+ "loss": 0.0998,
263
+ "step": 1550
264
+ },
265
+ {
266
+ "epoch": 0.36714089031665903,
267
+ "grad_norm": 0.252006858587265,
268
+ "learning_rate": 0.0004562987116271672,
269
+ "loss": 0.0984,
270
+ "step": 1600
271
+ },
272
+ {
273
+ "epoch": 0.3786140431390546,
274
+ "grad_norm": 0.42907676100730896,
275
+ "learning_rate": 0.00045431048194687453,
276
+ "loss": 0.0929,
277
+ "step": 1650
278
+ },
279
+ {
280
+ "epoch": 0.3900871959614502,
281
+ "grad_norm": 0.3133847117424011,
282
+ "learning_rate": 0.0004523222522665819,
283
+ "loss": 0.0995,
284
+ "step": 1700
285
+ },
286
+ {
287
+ "epoch": 0.4015603487838458,
288
+ "grad_norm": 0.2857881188392639,
289
+ "learning_rate": 0.0004503340225862892,
290
+ "loss": 0.095,
291
+ "step": 1750
292
+ },
293
+ {
294
+ "epoch": 0.4130335016062414,
295
+ "grad_norm": 0.4199719727039337,
296
+ "learning_rate": 0.0004483457929059965,
297
+ "loss": 0.0953,
298
+ "step": 1800
299
+ },
300
+ {
301
+ "epoch": 0.424506654428637,
302
+ "grad_norm": 0.43477049469947815,
303
+ "learning_rate": 0.00044635756322570385,
304
+ "loss": 0.0901,
305
+ "step": 1850
306
+ },
307
+ {
308
+ "epoch": 0.4359798072510326,
309
+ "grad_norm": 0.35086822509765625,
310
+ "learning_rate": 0.00044436933354541114,
311
+ "loss": 0.0958,
312
+ "step": 1900
313
+ },
314
+ {
315
+ "epoch": 0.44745296007342816,
316
+ "grad_norm": 0.22967366874217987,
317
+ "learning_rate": 0.0004423811038651185,
318
+ "loss": 0.0962,
319
+ "step": 1950
320
+ },
321
+ {
322
+ "epoch": 0.45892611289582375,
323
+ "grad_norm": 0.32249829173088074,
324
+ "learning_rate": 0.0004403928741848258,
325
+ "loss": 0.0951,
326
+ "step": 2000
327
+ },
328
+ {
329
+ "epoch": 0.45892611289582375,
330
+ "eval_accuracy": 0.9690691774610883,
331
+ "eval_f1": 0.9302497431533381,
332
+ "eval_loss": 0.09183786809444427,
333
+ "eval_precision": 0.9194746692093528,
334
+ "eval_recall": 0.9462869502523432,
335
+ "eval_runtime": 121.4699,
336
+ "eval_samples_per_second": 163.991,
337
+ "eval_steps_per_second": 10.249,
338
+ "step": 2000
339
+ },
340
+ {
341
+ "epoch": 0.4703992657182194,
342
+ "grad_norm": 0.3483874797821045,
343
+ "learning_rate": 0.00043840464450453317,
344
+ "loss": 0.0934,
345
+ "step": 2050
346
+ },
347
+ {
348
+ "epoch": 0.48187241854061497,
349
+ "grad_norm": 0.446117103099823,
350
+ "learning_rate": 0.0004364164148242405,
351
+ "loss": 0.0916,
352
+ "step": 2100
353
+ },
354
+ {
355
+ "epoch": 0.49334557136301055,
356
+ "grad_norm": 0.26050707697868347,
357
+ "learning_rate": 0.0004344281851439478,
358
+ "loss": 0.0912,
359
+ "step": 2150
360
+ },
361
+ {
362
+ "epoch": 0.5048187241854062,
363
+ "grad_norm": 0.7050098776817322,
364
+ "learning_rate": 0.00043243995546365515,
365
+ "loss": 0.0999,
366
+ "step": 2200
367
+ },
368
+ {
369
+ "epoch": 0.5162918770078018,
370
+ "grad_norm": 0.29161128401756287,
371
+ "learning_rate": 0.0004304517257833625,
372
+ "loss": 0.0974,
373
+ "step": 2250
374
+ },
375
+ {
376
+ "epoch": 0.5277650298301974,
377
+ "grad_norm": 0.24913199245929718,
378
+ "learning_rate": 0.00042846349610306983,
379
+ "loss": 0.0943,
380
+ "step": 2300
381
+ },
382
+ {
383
+ "epoch": 0.5392381826525929,
384
+ "grad_norm": 0.2685433626174927,
385
+ "learning_rate": 0.0004264752664227772,
386
+ "loss": 0.0937,
387
+ "step": 2350
388
+ },
389
+ {
390
+ "epoch": 0.5507113354749885,
391
+ "grad_norm": 0.3128316402435303,
392
+ "learning_rate": 0.0004244870367424845,
393
+ "loss": 0.0883,
394
+ "step": 2400
395
+ },
396
+ {
397
+ "epoch": 0.5621844882973841,
398
+ "grad_norm": 0.35494470596313477,
399
+ "learning_rate": 0.00042249880706219186,
400
+ "loss": 0.0946,
401
+ "step": 2450
402
+ },
403
+ {
404
+ "epoch": 0.5736576411197797,
405
+ "grad_norm": 0.3994844853878021,
406
+ "learning_rate": 0.0004205105773818992,
407
+ "loss": 0.0947,
408
+ "step": 2500
409
+ },
410
+ {
411
+ "epoch": 0.5736576411197797,
412
+ "eval_accuracy": 0.9688650630577742,
413
+ "eval_f1": 0.9293096562713767,
414
+ "eval_loss": 0.08980941772460938,
415
+ "eval_precision": 0.9170516031608807,
416
+ "eval_recall": 0.9498239578921504,
417
+ "eval_runtime": 118.7417,
418
+ "eval_samples_per_second": 167.759,
419
+ "eval_steps_per_second": 10.485,
420
+ "step": 2500
421
+ },
422
+ {
423
+ "epoch": 0.5851307939421753,
424
+ "grad_norm": 0.2693902254104614,
425
+ "learning_rate": 0.0004185223477016065,
426
+ "loss": 0.0979,
427
+ "step": 2550
428
+ },
429
+ {
430
+ "epoch": 0.596603946764571,
431
+ "grad_norm": 0.32620301842689514,
432
+ "learning_rate": 0.00041653411802131384,
433
+ "loss": 0.0921,
434
+ "step": 2600
435
+ },
436
+ {
437
+ "epoch": 0.6080770995869665,
438
+ "grad_norm": 0.2753586173057556,
439
+ "learning_rate": 0.00041454588834102113,
440
+ "loss": 0.0955,
441
+ "step": 2650
442
+ },
443
+ {
444
+ "epoch": 0.6195502524093621,
445
+ "grad_norm": 0.23614081740379333,
446
+ "learning_rate": 0.00041255765866072847,
447
+ "loss": 0.1073,
448
+ "step": 2700
449
+ },
450
+ {
451
+ "epoch": 0.6310234052317577,
452
+ "grad_norm": 0.19146519899368286,
453
+ "learning_rate": 0.0004105694289804358,
454
+ "loss": 0.0918,
455
+ "step": 2750
456
+ },
457
+ {
458
+ "epoch": 0.6424965580541533,
459
+ "grad_norm": 0.3596530258655548,
460
+ "learning_rate": 0.00040858119930014316,
461
+ "loss": 0.0914,
462
+ "step": 2800
463
+ },
464
+ {
465
+ "epoch": 0.6539697108765489,
466
+ "grad_norm": 0.3061048090457916,
467
+ "learning_rate": 0.0004065929696198505,
468
+ "loss": 0.0892,
469
+ "step": 2850
470
+ },
471
+ {
472
+ "epoch": 0.6654428636989445,
473
+ "grad_norm": 0.2256966084241867,
474
+ "learning_rate": 0.00040460473993955784,
475
+ "loss": 0.0913,
476
+ "step": 2900
477
+ },
478
+ {
479
+ "epoch": 0.67691601652134,
480
+ "grad_norm": 0.3125688135623932,
481
+ "learning_rate": 0.00040261651025926513,
482
+ "loss": 0.0901,
483
+ "step": 2950
484
+ },
485
+ {
486
+ "epoch": 0.6883891693437356,
487
+ "grad_norm": 0.29263100028038025,
488
+ "learning_rate": 0.0004006282805789725,
489
+ "loss": 0.0873,
490
+ "step": 3000
491
+ },
492
+ {
493
+ "epoch": 0.6883891693437356,
494
+ "eval_accuracy": 0.9712428085954635,
495
+ "eval_f1": 0.9363408053418008,
496
+ "eval_loss": 0.0843813493847847,
497
+ "eval_precision": 0.9319932598753176,
498
+ "eval_recall": 0.9405207225324199,
499
+ "eval_runtime": 118.9982,
500
+ "eval_samples_per_second": 167.398,
501
+ "eval_steps_per_second": 10.462,
502
+ "step": 3000
503
+ },
504
+ {
505
+ "epoch": 0.6998623221661312,
506
+ "grad_norm": 0.27859926223754883,
507
+ "learning_rate": 0.0003986400508986798,
508
+ "loss": 0.0906,
509
+ "step": 3050
510
+ },
511
+ {
512
+ "epoch": 0.7113354749885269,
513
+ "grad_norm": 0.3490137755870819,
514
+ "learning_rate": 0.00039665182121838716,
515
+ "loss": 0.0902,
516
+ "step": 3100
517
+ },
518
+ {
519
+ "epoch": 0.7228086278109225,
520
+ "grad_norm": 0.48625850677490234,
521
+ "learning_rate": 0.0003946635915380945,
522
+ "loss": 0.0912,
523
+ "step": 3150
524
+ },
525
+ {
526
+ "epoch": 0.7342817806333181,
527
+ "grad_norm": 0.3152211904525757,
528
+ "learning_rate": 0.00039267536185780185,
529
+ "loss": 0.0877,
530
+ "step": 3200
531
+ },
532
+ {
533
+ "epoch": 0.7457549334557136,
534
+ "grad_norm": 0.39225655794143677,
535
+ "learning_rate": 0.0003906871321775092,
536
+ "loss": 0.0935,
537
+ "step": 3250
538
+ },
539
+ {
540
+ "epoch": 0.7572280862781092,
541
+ "grad_norm": 0.29573819041252136,
542
+ "learning_rate": 0.00038869890249721654,
543
+ "loss": 0.0945,
544
+ "step": 3300
545
+ },
546
+ {
547
+ "epoch": 0.7687012391005048,
548
+ "grad_norm": 0.33124953508377075,
549
+ "learning_rate": 0.00038671067281692377,
550
+ "loss": 0.0893,
551
+ "step": 3350
552
+ },
553
+ {
554
+ "epoch": 0.7801743919229004,
555
+ "grad_norm": 0.32787060737609863,
556
+ "learning_rate": 0.0003847224431366311,
557
+ "loss": 0.0851,
558
+ "step": 3400
559
+ },
560
+ {
561
+ "epoch": 0.791647544745296,
562
+ "grad_norm": 0.28153640031814575,
563
+ "learning_rate": 0.00038273421345633846,
564
+ "loss": 0.0809,
565
+ "step": 3450
566
+ },
567
+ {
568
+ "epoch": 0.8031206975676916,
569
+ "grad_norm": 0.16959865391254425,
570
+ "learning_rate": 0.0003807459837760458,
571
+ "loss": 0.0863,
572
+ "step": 3500
573
+ },
574
+ {
575
+ "epoch": 0.8031206975676916,
576
+ "eval_accuracy": 0.9710864457268696,
577
+ "eval_f1": 0.93562115593739,
578
+ "eval_loss": 0.08447056263685226,
579
+ "eval_precision": 0.9258313586536397,
580
+ "eval_recall": 0.9499548983029477,
581
+ "eval_runtime": 118.7686,
582
+ "eval_samples_per_second": 167.721,
583
+ "eval_steps_per_second": 10.483,
584
+ "step": 3500
585
+ },
586
+ {
587
+ "epoch": 0.8145938503900872,
588
+ "grad_norm": 0.25350427627563477,
589
+ "learning_rate": 0.00037875775409575315,
590
+ "loss": 0.0911,
591
+ "step": 3550
592
+ },
593
+ {
594
+ "epoch": 0.8260670032124828,
595
+ "grad_norm": 0.265812486410141,
596
+ "learning_rate": 0.0003767695244154605,
597
+ "loss": 0.0898,
598
+ "step": 3600
599
+ },
600
+ {
601
+ "epoch": 0.8375401560348784,
602
+ "grad_norm": 0.3460964560508728,
603
+ "learning_rate": 0.00037478129473516783,
604
+ "loss": 0.0904,
605
+ "step": 3650
606
+ },
607
+ {
608
+ "epoch": 0.849013308857274,
609
+ "grad_norm": 0.2548121213912964,
610
+ "learning_rate": 0.0003727930650548751,
611
+ "loss": 0.0844,
612
+ "step": 3700
613
+ },
614
+ {
615
+ "epoch": 0.8604864616796696,
616
+ "grad_norm": 0.3280368447303772,
617
+ "learning_rate": 0.00037080483537458247,
618
+ "loss": 0.0881,
619
+ "step": 3750
620
+ },
621
+ {
622
+ "epoch": 0.8719596145020652,
623
+ "grad_norm": 0.3780980706214905,
624
+ "learning_rate": 0.0003688166056942898,
625
+ "loss": 0.0869,
626
+ "step": 3800
627
+ },
628
+ {
629
+ "epoch": 0.8834327673244607,
630
+ "grad_norm": 0.27135029435157776,
631
+ "learning_rate": 0.00036682837601399715,
632
+ "loss": 0.0889,
633
+ "step": 3850
634
+ },
635
+ {
636
+ "epoch": 0.8949059201468563,
637
+ "grad_norm": 0.25403034687042236,
638
+ "learning_rate": 0.0003648401463337045,
639
+ "loss": 0.091,
640
+ "step": 3900
641
+ },
642
+ {
643
+ "epoch": 0.9063790729692519,
644
+ "grad_norm": 0.20978939533233643,
645
+ "learning_rate": 0.00036285191665341184,
646
+ "loss": 0.0884,
647
+ "step": 3950
648
+ },
649
+ {
650
+ "epoch": 0.9178522257916475,
651
+ "grad_norm": 0.3094377815723419,
652
+ "learning_rate": 0.0003608636869731192,
653
+ "loss": 0.0874,
654
+ "step": 4000
655
+ },
656
+ {
657
+ "epoch": 0.9178522257916475,
658
+ "eval_accuracy": 0.9705721804240243,
659
+ "eval_f1": 0.933095606006577,
660
+ "eval_loss": 0.08402583748102188,
661
+ "eval_precision": 0.9196705654871365,
662
+ "eval_recall": 0.9517589661850431,
663
+ "eval_runtime": 117.7619,
664
+ "eval_samples_per_second": 169.155,
665
+ "eval_steps_per_second": 10.572,
666
+ "step": 4000
667
+ },
668
+ {
669
+ "epoch": 0.9293253786140432,
670
+ "grad_norm": 0.2958351671695709,
671
+ "learning_rate": 0.0003588754572928265,
672
+ "loss": 0.0877,
673
+ "step": 4050
674
+ },
675
+ {
676
+ "epoch": 0.9407985314364388,
677
+ "grad_norm": 0.26525843143463135,
678
+ "learning_rate": 0.00035688722761253376,
679
+ "loss": 0.0849,
680
+ "step": 4100
681
+ },
682
+ {
683
+ "epoch": 0.9522716842588343,
684
+ "grad_norm": 0.3481367826461792,
685
+ "learning_rate": 0.0003548989979322411,
686
+ "loss": 0.0874,
687
+ "step": 4150
688
+ },
689
+ {
690
+ "epoch": 0.9637448370812299,
691
+ "grad_norm": 0.28561869263648987,
692
+ "learning_rate": 0.00035291076825194845,
693
+ "loss": 0.0858,
694
+ "step": 4200
695
+ },
696
+ {
697
+ "epoch": 0.9752179899036255,
698
+ "grad_norm": 0.29354673624038696,
699
+ "learning_rate": 0.0003509225385716558,
700
+ "loss": 0.0832,
701
+ "step": 4250
702
+ },
703
+ {
704
+ "epoch": 0.9866911427260211,
705
+ "grad_norm": 0.2132130116224289,
706
+ "learning_rate": 0.00034893430889136313,
707
+ "loss": 0.0848,
708
+ "step": 4300
709
+ },
710
+ {
711
+ "epoch": 0.9981642955484167,
712
+ "grad_norm": 0.3773078918457031,
713
+ "learning_rate": 0.0003469460792110705,
714
+ "loss": 0.084,
715
+ "step": 4350
716
+ },
717
+ {
718
+ "epoch": 1.0096374483708124,
719
+ "grad_norm": 0.2106359899044037,
720
+ "learning_rate": 0.0003449578495307778,
721
+ "loss": 0.0847,
722
+ "step": 4400
723
+ },
724
+ {
725
+ "epoch": 1.0211106011932078,
726
+ "grad_norm": 0.32030966877937317,
727
+ "learning_rate": 0.0003429696198504851,
728
+ "loss": 0.0865,
729
+ "step": 4450
730
+ },
731
+ {
732
+ "epoch": 1.0325837540156035,
733
+ "grad_norm": 0.22732515633106232,
734
+ "learning_rate": 0.00034098139017019245,
735
+ "loss": 0.0789,
736
+ "step": 4500
737
+ },
738
+ {
739
+ "epoch": 1.0325837540156035,
740
+ "eval_accuracy": 0.9716784243117108,
741
+ "eval_f1": 0.9380768901857637,
742
+ "eval_loss": 0.08132949471473694,
743
+ "eval_precision": 0.9318431066870271,
744
+ "eval_recall": 0.9486988402882629,
745
+ "eval_runtime": 119.6134,
746
+ "eval_samples_per_second": 166.536,
747
+ "eval_steps_per_second": 10.409,
748
+ "step": 4500
749
+ },
750
+ {
751
+ "epoch": 1.044056906837999,
752
+ "grad_norm": 0.28138020634651184,
753
+ "learning_rate": 0.0003389931604898998,
754
+ "loss": 0.0833,
755
+ "step": 4550
756
+ },
757
+ {
758
+ "epoch": 1.0555300596603947,
759
+ "grad_norm": 0.4682922959327698,
760
+ "learning_rate": 0.00033700493080960714,
761
+ "loss": 0.0747,
762
+ "step": 4600
763
+ },
764
+ {
765
+ "epoch": 1.0670032124827902,
766
+ "grad_norm": 0.2394658625125885,
767
+ "learning_rate": 0.0003350167011293145,
768
+ "loss": 0.0901,
769
+ "step": 4650
770
+ },
771
+ {
772
+ "epoch": 1.0784763653051859,
773
+ "grad_norm": 0.20465607941150665,
774
+ "learning_rate": 0.0003330284714490218,
775
+ "loss": 0.08,
776
+ "step": 4700
777
+ },
778
+ {
779
+ "epoch": 1.0899495181275816,
780
+ "grad_norm": 0.1981644332408905,
781
+ "learning_rate": 0.00033104024176872917,
782
+ "loss": 0.0882,
783
+ "step": 4750
784
+ },
785
+ {
786
+ "epoch": 1.101422670949977,
787
+ "grad_norm": 0.2882890999317169,
788
+ "learning_rate": 0.00032905201208843646,
789
+ "loss": 0.0847,
790
+ "step": 4800
791
+ },
792
+ {
793
+ "epoch": 1.1128958237723727,
794
+ "grad_norm": 0.32356107234954834,
795
+ "learning_rate": 0.00032706378240814375,
796
+ "loss": 0.0904,
797
+ "step": 4850
798
+ },
799
+ {
800
+ "epoch": 1.1243689765947682,
801
+ "grad_norm": 0.2824298143386841,
802
+ "learning_rate": 0.0003250755527278511,
803
+ "loss": 0.0808,
804
+ "step": 4900
805
+ },
806
+ {
807
+ "epoch": 1.135842129417164,
808
+ "grad_norm": 0.4001295268535614,
809
+ "learning_rate": 0.00032308732304755844,
810
+ "loss": 0.0772,
811
+ "step": 4950
812
+ },
813
+ {
814
+ "epoch": 1.1473152822395594,
815
+ "grad_norm": 0.3055209815502167,
816
+ "learning_rate": 0.0003210990933672658,
817
+ "loss": 0.0825,
818
+ "step": 5000
819
+ },
820
+ {
821
+ "epoch": 1.1473152822395594,
822
+ "eval_accuracy": 0.9722970875777192,
823
+ "eval_f1": 0.9379456924855788,
824
+ "eval_loss": 0.08106915652751923,
825
+ "eval_precision": 0.9298989900295542,
826
+ "eval_recall": 0.9480877850378757,
827
+ "eval_runtime": 117.2311,
828
+ "eval_samples_per_second": 169.921,
829
+ "eval_steps_per_second": 10.62,
830
+ "step": 5000
831
+ },
832
+ {
833
+ "epoch": 1.158788435061955,
834
+ "grad_norm": 0.21581706404685974,
835
+ "learning_rate": 0.0003191108636869731,
836
+ "loss": 0.0785,
837
+ "step": 5050
838
+ },
839
+ {
840
+ "epoch": 1.1702615878843505,
841
+ "grad_norm": 0.21193784475326538,
842
+ "learning_rate": 0.00031712263400668047,
843
+ "loss": 0.084,
844
+ "step": 5100
845
+ },
846
+ {
847
+ "epoch": 1.1817347407067462,
848
+ "grad_norm": 0.22416283190250397,
849
+ "learning_rate": 0.0003151344043263878,
850
+ "loss": 0.0803,
851
+ "step": 5150
852
+ },
853
+ {
854
+ "epoch": 1.193207893529142,
855
+ "grad_norm": 0.20190711319446564,
856
+ "learning_rate": 0.00031314617464609515,
857
+ "loss": 0.0826,
858
+ "step": 5200
859
+ },
860
+ {
861
+ "epoch": 1.2046810463515374,
862
+ "grad_norm": 0.27103227376937866,
863
+ "learning_rate": 0.00031115794496580244,
864
+ "loss": 0.0865,
865
+ "step": 5250
866
+ },
867
+ {
868
+ "epoch": 1.216154199173933,
869
+ "grad_norm": 0.33871927857398987,
870
+ "learning_rate": 0.0003091697152855098,
871
+ "loss": 0.0859,
872
+ "step": 5300
873
+ },
874
+ {
875
+ "epoch": 1.2276273519963286,
876
+ "grad_norm": 0.3408603370189667,
877
+ "learning_rate": 0.00030718148560521713,
878
+ "loss": 0.0812,
879
+ "step": 5350
880
+ },
881
+ {
882
+ "epoch": 1.2391005048187242,
883
+ "grad_norm": 0.22194986045360565,
884
+ "learning_rate": 0.00030519325592492447,
885
+ "loss": 0.0821,
886
+ "step": 5400
887
+ },
888
+ {
889
+ "epoch": 1.2505736576411197,
890
+ "grad_norm": 0.27335065603256226,
891
+ "learning_rate": 0.0003032050262446318,
892
+ "loss": 0.0836,
893
+ "step": 5450
894
+ },
895
+ {
896
+ "epoch": 1.2620468104635154,
897
+ "grad_norm": 0.23065054416656494,
898
+ "learning_rate": 0.00030121679656433916,
899
+ "loss": 0.0816,
900
+ "step": 5500
901
+ },
902
+ {
903
+ "epoch": 1.2620468104635154,
904
+ "eval_accuracy": 0.9727914564077644,
905
+ "eval_f1": 0.9393282739038921,
906
+ "eval_loss": 0.07892649620771408,
907
+ "eval_precision": 0.9297129712043323,
908
+ "eval_recall": 0.9530020918134762,
909
+ "eval_runtime": 120.0797,
910
+ "eval_samples_per_second": 165.89,
911
+ "eval_steps_per_second": 10.368,
912
+ "step": 5500
913
+ },
914
+ {
915
+ "epoch": 1.2735199632859109,
916
+ "grad_norm": 0.4883849620819092,
917
+ "learning_rate": 0.00029922856688404645,
918
+ "loss": 0.0853,
919
+ "step": 5550
920
+ },
921
+ {
922
+ "epoch": 1.2849931161083066,
923
+ "grad_norm": 0.28291383385658264,
924
+ "learning_rate": 0.00029724033720375374,
925
+ "loss": 0.0752,
926
+ "step": 5600
927
+ },
928
+ {
929
+ "epoch": 1.2964662689307023,
930
+ "grad_norm": 0.2305889129638672,
931
+ "learning_rate": 0.0002952521075234611,
932
+ "loss": 0.0845,
933
+ "step": 5650
934
+ },
935
+ {
936
+ "epoch": 1.3079394217530977,
937
+ "grad_norm": 0.32855790853500366,
938
+ "learning_rate": 0.0002932638778431684,
939
+ "loss": 0.0798,
940
+ "step": 5700
941
+ },
942
+ {
943
+ "epoch": 1.3194125745754932,
944
+ "grad_norm": 0.20923027396202087,
945
+ "learning_rate": 0.00029127564816287577,
946
+ "loss": 0.0782,
947
+ "step": 5750
948
+ },
949
+ {
950
+ "epoch": 1.330885727397889,
951
+ "grad_norm": 0.28620150685310364,
952
+ "learning_rate": 0.0002892874184825831,
953
+ "loss": 0.085,
954
+ "step": 5800
955
+ },
956
+ {
957
+ "epoch": 1.3423588802202846,
958
+ "grad_norm": 0.2952438294887543,
959
+ "learning_rate": 0.00028729918880229045,
960
+ "loss": 0.0837,
961
+ "step": 5850
962
+ },
963
+ {
964
+ "epoch": 1.35383203304268,
965
+ "grad_norm": 0.34050026535987854,
966
+ "learning_rate": 0.0002853109591219978,
967
+ "loss": 0.0808,
968
+ "step": 5900
969
+ },
970
+ {
971
+ "epoch": 1.3653051858650758,
972
+ "grad_norm": 0.2680424451828003,
973
+ "learning_rate": 0.00028332272944170514,
974
+ "loss": 0.081,
975
+ "step": 5950
976
+ },
977
+ {
978
+ "epoch": 1.3767783386874712,
979
+ "grad_norm": 0.2738819718360901,
980
+ "learning_rate": 0.00028133449976141243,
981
+ "loss": 0.0723,
982
+ "step": 6000
983
+ },
984
+ {
985
+ "epoch": 1.3767783386874712,
986
+ "eval_accuracy": 0.9722467612053424,
987
+ "eval_f1": 0.9398005425243338,
988
+ "eval_loss": 0.08021672815084457,
989
+ "eval_precision": 0.9293461722001554,
990
+ "eval_recall": 0.9521032909689914,
991
+ "eval_runtime": 119.0417,
992
+ "eval_samples_per_second": 167.336,
993
+ "eval_steps_per_second": 10.459,
994
+ "step": 6000
995
+ },
996
+ {
997
+ "epoch": 1.388251491509867,
998
+ "grad_norm": 0.27307409048080444,
999
+ "learning_rate": 0.0002793462700811198,
1000
+ "loss": 0.0765,
1001
+ "step": 6050
1002
+ },
1003
+ {
1004
+ "epoch": 1.3997246443322626,
1005
+ "grad_norm": 0.32893654704093933,
1006
+ "learning_rate": 0.0002773580404008271,
1007
+ "loss": 0.0755,
1008
+ "step": 6100
1009
+ },
1010
+ {
1011
+ "epoch": 1.411197797154658,
1012
+ "grad_norm": 0.20027205348014832,
1013
+ "learning_rate": 0.00027536981072053446,
1014
+ "loss": 0.0833,
1015
+ "step": 6150
1016
+ },
1017
+ {
1018
+ "epoch": 1.4226709499770536,
1019
+ "grad_norm": 0.37896206974983215,
1020
+ "learning_rate": 0.0002733815810402418,
1021
+ "loss": 0.0773,
1022
+ "step": 6200
1023
+ },
1024
+ {
1025
+ "epoch": 1.4341441027994493,
1026
+ "grad_norm": 0.3074203431606293,
1027
+ "learning_rate": 0.0002713933513599491,
1028
+ "loss": 0.0773,
1029
+ "step": 6250
1030
+ },
1031
+ {
1032
+ "epoch": 1.445617255621845,
1033
+ "grad_norm": 0.37647494673728943,
1034
+ "learning_rate": 0.00026940512167965644,
1035
+ "loss": 0.0736,
1036
+ "step": 6300
1037
+ },
1038
+ {
1039
+ "epoch": 1.4570904084442404,
1040
+ "grad_norm": 0.28269490599632263,
1041
+ "learning_rate": 0.0002674168919993638,
1042
+ "loss": 0.0846,
1043
+ "step": 6350
1044
+ },
1045
+ {
1046
+ "epoch": 1.4685635612666361,
1047
+ "grad_norm": 0.25752097368240356,
1048
+ "learning_rate": 0.00026542866231907107,
1049
+ "loss": 0.0774,
1050
+ "step": 6400
1051
+ },
1052
+ {
1053
+ "epoch": 1.4800367140890316,
1054
+ "grad_norm": 0.2019287496805191,
1055
+ "learning_rate": 0.0002634404326387784,
1056
+ "loss": 0.0782,
1057
+ "step": 6450
1058
+ },
1059
+ {
1060
+ "epoch": 1.4915098669114273,
1061
+ "grad_norm": 0.29280802607536316,
1062
+ "learning_rate": 0.00026145220295848576,
1063
+ "loss": 0.08,
1064
+ "step": 6500
1065
+ },
1066
+ {
1067
+ "epoch": 1.4915098669114273,
1068
+ "eval_accuracy": 0.9731327394353241,
1069
+ "eval_f1": 0.9410652647060472,
1070
+ "eval_loss": 0.07659982889890671,
1071
+ "eval_precision": 0.9339469742244639,
1072
+ "eval_recall": 0.949541061942897,
1073
+ "eval_runtime": 119.2428,
1074
+ "eval_samples_per_second": 167.054,
1075
+ "eval_steps_per_second": 10.441,
1076
+ "step": 6500
1077
+ },
1078
+ {
1079
+ "epoch": 1.502983019733823,
1080
+ "grad_norm": 0.2708223760128021,
1081
+ "learning_rate": 0.0002594639732781931,
1082
+ "loss": 0.0738,
1083
+ "step": 6550
1084
+ },
1085
+ {
1086
+ "epoch": 1.5144561725562184,
1087
+ "grad_norm": 0.23474043607711792,
1088
+ "learning_rate": 0.00025747574359790044,
1089
+ "loss": 0.0765,
1090
+ "step": 6600
1091
+ },
1092
+ {
1093
+ "epoch": 1.525929325378614,
1094
+ "grad_norm": 0.2765410542488098,
1095
+ "learning_rate": 0.0002554875139176078,
1096
+ "loss": 0.0825,
1097
+ "step": 6650
1098
+ },
1099
+ {
1100
+ "epoch": 1.5374024782010096,
1101
+ "grad_norm": 0.28831180930137634,
1102
+ "learning_rate": 0.00025349928423731513,
1103
+ "loss": 0.085,
1104
+ "step": 6700
1105
+ },
1106
+ {
1107
+ "epoch": 1.5488756310234053,
1108
+ "grad_norm": 0.2184303253889084,
1109
+ "learning_rate": 0.00025151105455702247,
1110
+ "loss": 0.0735,
1111
+ "step": 6750
1112
+ },
1113
+ {
1114
+ "epoch": 1.5603487838458008,
1115
+ "grad_norm": 0.2716689705848694,
1116
+ "learning_rate": 0.00024952282487672976,
1117
+ "loss": 0.0801,
1118
+ "step": 6800
1119
+ },
1120
+ {
1121
+ "epoch": 1.5718219366681965,
1122
+ "grad_norm": 0.21314671635627747,
1123
+ "learning_rate": 0.0002475345951964371,
1124
+ "loss": 0.0786,
1125
+ "step": 6850
1126
+ },
1127
+ {
1128
+ "epoch": 1.583295089490592,
1129
+ "grad_norm": 0.27691009640693665,
1130
+ "learning_rate": 0.00024554636551614445,
1131
+ "loss": 0.0828,
1132
+ "step": 6900
1133
+ },
1134
+ {
1135
+ "epoch": 1.5947682423129876,
1136
+ "grad_norm": 0.17883095145225525,
1137
+ "learning_rate": 0.00024355813583585176,
1138
+ "loss": 0.0774,
1139
+ "step": 6950
1140
+ },
1141
+ {
1142
+ "epoch": 1.6062413951353833,
1143
+ "grad_norm": 0.271129846572876,
1144
+ "learning_rate": 0.0002415699061555591,
1145
+ "loss": 0.0765,
1146
+ "step": 7000
1147
+ },
1148
+ {
1149
+ "epoch": 1.6062413951353833,
1150
+ "eval_accuracy": 0.9728195455458352,
1151
+ "eval_f1": 0.9411493302318824,
1152
+ "eval_loss": 0.07761505246162415,
1153
+ "eval_precision": 0.9323404680064952,
1154
+ "eval_recall": 0.9529729939444102,
1155
+ "eval_runtime": 119.0526,
1156
+ "eval_samples_per_second": 167.321,
1157
+ "eval_steps_per_second": 10.458,
1158
+ "step": 7000
1159
+ },
1160
+ {
1161
+ "epoch": 1.6177145479577788,
1162
+ "grad_norm": 0.291202187538147,
1163
+ "learning_rate": 0.00023958167647526642,
1164
+ "loss": 0.0805,
1165
+ "step": 7050
1166
+ },
1167
+ {
1168
+ "epoch": 1.6291877007801743,
1169
+ "grad_norm": 0.34442946314811707,
1170
+ "learning_rate": 0.00023759344679497377,
1171
+ "loss": 0.0793,
1172
+ "step": 7100
1173
+ },
1174
+ {
1175
+ "epoch": 1.64066085360257,
1176
+ "grad_norm": 0.259473592042923,
1177
+ "learning_rate": 0.00023560521711468108,
1178
+ "loss": 0.0796,
1179
+ "step": 7150
1180
+ },
1181
+ {
1182
+ "epoch": 1.6521340064249657,
1183
+ "grad_norm": 0.2742938697338104,
1184
+ "learning_rate": 0.00023361698743438843,
1185
+ "loss": 0.0736,
1186
+ "step": 7200
1187
+ },
1188
+ {
1189
+ "epoch": 1.6636071592473611,
1190
+ "grad_norm": 0.2515215575695038,
1191
+ "learning_rate": 0.00023162875775409574,
1192
+ "loss": 0.0795,
1193
+ "step": 7250
1194
+ },
1195
+ {
1196
+ "epoch": 1.6750803120697566,
1197
+ "grad_norm": 0.25539901852607727,
1198
+ "learning_rate": 0.0002296405280738031,
1199
+ "loss": 0.0717,
1200
+ "step": 7300
1201
+ },
1202
+ {
1203
+ "epoch": 1.6865534648921523,
1204
+ "grad_norm": 0.3502283990383148,
1205
+ "learning_rate": 0.00022765229839351043,
1206
+ "loss": 0.0747,
1207
+ "step": 7350
1208
+ },
1209
+ {
1210
+ "epoch": 1.698026617714548,
1211
+ "grad_norm": 0.33969902992248535,
1212
+ "learning_rate": 0.00022566406871321777,
1213
+ "loss": 0.0756,
1214
+ "step": 7400
1215
+ },
1216
+ {
1217
+ "epoch": 1.7094997705369437,
1218
+ "grad_norm": 0.25111883878707886,
1219
+ "learning_rate": 0.0002236758390329251,
1220
+ "loss": 0.0773,
1221
+ "step": 7450
1222
+ },
1223
+ {
1224
+ "epoch": 1.7209729233593392,
1225
+ "grad_norm": 0.19171655178070068,
1226
+ "learning_rate": 0.0002216876093526324,
1227
+ "loss": 0.0763,
1228
+ "step": 7500
1229
+ },
1230
+ {
1231
+ "epoch": 1.7209729233593392,
1232
+ "eval_accuracy": 0.9737420396553088,
1233
+ "eval_f1": 0.9419056166125817,
1234
+ "eval_loss": 0.07485274225473404,
1235
+ "eval_precision": 0.9380178663505828,
1236
+ "eval_recall": 0.947572106136094,
1237
+ "eval_runtime": 118.3867,
1238
+ "eval_samples_per_second": 168.262,
1239
+ "eval_steps_per_second": 10.516,
1240
+ "step": 7500
1241
+ },
1242
+ {
1243
+ "epoch": 1.7324460761817346,
1244
+ "grad_norm": 0.29894569516181946,
1245
+ "learning_rate": 0.00021969937967233975,
1246
+ "loss": 0.0801,
1247
+ "step": 7550
1248
+ },
1249
+ {
1250
+ "epoch": 1.7439192290041303,
1251
+ "grad_norm": 0.2702566981315613,
1252
+ "learning_rate": 0.0002177111499920471,
1253
+ "loss": 0.0766,
1254
+ "step": 7600
1255
+ },
1256
+ {
1257
+ "epoch": 1.755392381826526,
1258
+ "grad_norm": 0.380188912153244,
1259
+ "learning_rate": 0.0002157229203117544,
1260
+ "loss": 0.0784,
1261
+ "step": 7650
1262
+ },
1263
+ {
1264
+ "epoch": 1.7668655346489215,
1265
+ "grad_norm": 0.40631330013275146,
1266
+ "learning_rate": 0.00021373469063146175,
1267
+ "loss": 0.0749,
1268
+ "step": 7700
1269
+ },
1270
+ {
1271
+ "epoch": 1.778338687471317,
1272
+ "grad_norm": 0.28044983744621277,
1273
+ "learning_rate": 0.0002117464609511691,
1274
+ "loss": 0.0728,
1275
+ "step": 7750
1276
+ },
1277
+ {
1278
+ "epoch": 1.7898118402937127,
1279
+ "grad_norm": 0.2612505853176117,
1280
+ "learning_rate": 0.00020975823127087644,
1281
+ "loss": 0.0763,
1282
+ "step": 7800
1283
+ },
1284
+ {
1285
+ "epoch": 1.8012849931161083,
1286
+ "grad_norm": 0.3105819523334503,
1287
+ "learning_rate": 0.00020777000159058373,
1288
+ "loss": 0.0796,
1289
+ "step": 7850
1290
+ },
1291
+ {
1292
+ "epoch": 1.812758145938504,
1293
+ "grad_norm": 0.19942106306552887,
1294
+ "learning_rate": 0.00020578177191029107,
1295
+ "loss": 0.078,
1296
+ "step": 7900
1297
+ },
1298
+ {
1299
+ "epoch": 1.8242312987608995,
1300
+ "grad_norm": 0.3573172986507416,
1301
+ "learning_rate": 0.00020379354222999841,
1302
+ "loss": 0.0767,
1303
+ "step": 7950
1304
+ },
1305
+ {
1306
+ "epoch": 1.835704451583295,
1307
+ "grad_norm": 0.28859594464302063,
1308
+ "learning_rate": 0.00020180531254970573,
1309
+ "loss": 0.081,
1310
+ "step": 8000
1311
+ },
1312
+ {
1313
+ "epoch": 1.835704451583295,
1314
+ "eval_accuracy": 0.9739487288962795,
1315
+ "eval_f1": 0.9433389998606067,
1316
+ "eval_loss": 0.07406344264745712,
1317
+ "eval_precision": 0.9362268776515584,
1318
+ "eval_recall": 0.9517735151195761,
1319
+ "eval_runtime": 119.11,
1320
+ "eval_samples_per_second": 167.24,
1321
+ "eval_steps_per_second": 10.453,
1322
+ "step": 8000
1323
+ },
1324
+ {
1325
+ "epoch": 1.8471776044056907,
1326
+ "grad_norm": 0.4359795153141022,
1327
+ "learning_rate": 0.00019981708286941307,
1328
+ "loss": 0.0763,
1329
+ "step": 8050
1330
+ },
1331
+ {
1332
+ "epoch": 1.8586507572280864,
1333
+ "grad_norm": 0.3242838382720947,
1334
+ "learning_rate": 0.00019782885318912042,
1335
+ "loss": 0.0724,
1336
+ "step": 8100
1337
+ },
1338
+ {
1339
+ "epoch": 1.8701239100504818,
1340
+ "grad_norm": 0.2099728137254715,
1341
+ "learning_rate": 0.00019584062350882776,
1342
+ "loss": 0.0786,
1343
+ "step": 8150
1344
+ },
1345
+ {
1346
+ "epoch": 1.8815970628728773,
1347
+ "grad_norm": 0.2423078864812851,
1348
+ "learning_rate": 0.00019385239382853508,
1349
+ "loss": 0.0721,
1350
+ "step": 8200
1351
+ },
1352
+ {
1353
+ "epoch": 1.893070215695273,
1354
+ "grad_norm": 0.3431580364704132,
1355
+ "learning_rate": 0.0001918641641482424,
1356
+ "loss": 0.0832,
1357
+ "step": 8250
1358
+ },
1359
+ {
1360
+ "epoch": 1.9045433685176687,
1361
+ "grad_norm": 0.1967107057571411,
1362
+ "learning_rate": 0.00018987593446794974,
1363
+ "loss": 0.0767,
1364
+ "step": 8300
1365
+ },
1366
+ {
1367
+ "epoch": 1.9160165213400644,
1368
+ "grad_norm": 0.28923261165618896,
1369
+ "learning_rate": 0.00018788770478765708,
1370
+ "loss": 0.0747,
1371
+ "step": 8350
1372
+ },
1373
+ {
1374
+ "epoch": 1.9274896741624599,
1375
+ "grad_norm": 0.2539917826652527,
1376
+ "learning_rate": 0.0001858994751073644,
1377
+ "loss": 0.0805,
1378
+ "step": 8400
1379
+ },
1380
+ {
1381
+ "epoch": 1.9389628269848553,
1382
+ "grad_norm": 0.2369006723165512,
1383
+ "learning_rate": 0.00018391124542707174,
1384
+ "loss": 0.0712,
1385
+ "step": 8450
1386
+ },
1387
+ {
1388
+ "epoch": 1.950435979807251,
1389
+ "grad_norm": 0.31666308641433716,
1390
+ "learning_rate": 0.00018192301574677908,
1391
+ "loss": 0.0763,
1392
+ "step": 8500
1393
+ },
1394
+ {
1395
+ "epoch": 1.950435979807251,
1396
+ "eval_accuracy": 0.9740484453364306,
1397
+ "eval_f1": 0.9422648085299441,
1398
+ "eval_loss": 0.07338932156562805,
1399
+ "eval_precision": 0.9361482440420985,
1400
+ "eval_recall": 0.9501505006450027,
1401
+ "eval_runtime": 118.5531,
1402
+ "eval_samples_per_second": 168.026,
1403
+ "eval_steps_per_second": 10.502,
1404
+ "step": 8500
1405
+ },
1406
+ {
1407
+ "epoch": 1.9619091326296467,
1408
+ "grad_norm": 0.21725589036941528,
1409
+ "learning_rate": 0.00017993478606648643,
1410
+ "loss": 0.0844,
1411
+ "step": 8550
1412
+ },
1413
+ {
1414
+ "epoch": 1.9733822854520422,
1415
+ "grad_norm": 0.2819405198097229,
1416
+ "learning_rate": 0.00017794655638619372,
1417
+ "loss": 0.0759,
1418
+ "step": 8600
1419
+ },
1420
+ {
1421
+ "epoch": 1.9848554382744377,
1422
+ "grad_norm": 0.2227209508419037,
1423
+ "learning_rate": 0.00017595832670590106,
1424
+ "loss": 0.0717,
1425
+ "step": 8650
1426
+ },
1427
+ {
1428
+ "epoch": 1.9963285910968334,
1429
+ "grad_norm": 0.2700563073158264,
1430
+ "learning_rate": 0.0001739700970256084,
1431
+ "loss": 0.0765,
1432
+ "step": 8700
1433
+ },
1434
+ {
1435
+ "epoch": 2.007801743919229,
1436
+ "grad_norm": 0.34059178829193115,
1437
+ "learning_rate": 0.00017198186734531575,
1438
+ "loss": 0.0742,
1439
+ "step": 8750
1440
+ },
1441
+ {
1442
+ "epoch": 2.0192748967416247,
1443
+ "grad_norm": 0.2557748258113861,
1444
+ "learning_rate": 0.00016999363766502306,
1445
+ "loss": 0.0713,
1446
+ "step": 8800
1447
+ },
1448
+ {
1449
+ "epoch": 2.03074804956402,
1450
+ "grad_norm": 0.31445449590682983,
1451
+ "learning_rate": 0.0001680054079847304,
1452
+ "loss": 0.0747,
1453
+ "step": 8850
1454
+ },
1455
+ {
1456
+ "epoch": 2.0422212023864157,
1457
+ "grad_norm": 0.3940103352069855,
1458
+ "learning_rate": 0.00016601717830443775,
1459
+ "loss": 0.0706,
1460
+ "step": 8900
1461
+ },
1462
+ {
1463
+ "epoch": 2.0536943552088114,
1464
+ "grad_norm": 0.27769824862480164,
1465
+ "learning_rate": 0.00016402894862414507,
1466
+ "loss": 0.0718,
1467
+ "step": 8950
1468
+ },
1469
+ {
1470
+ "epoch": 2.065167508031207,
1471
+ "grad_norm": 0.28729698061943054,
1472
+ "learning_rate": 0.00016204071894385238,
1473
+ "loss": 0.073,
1474
+ "step": 9000
1475
+ },
1476
+ {
1477
+ "epoch": 2.065167508031207,
1478
+ "eval_accuracy": 0.974420158263567,
1479
+ "eval_f1": 0.9445772525431679,
1480
+ "eval_loss": 0.07281184196472168,
1481
+ "eval_precision": 0.9397438689480371,
1482
+ "eval_recall": 0.9504560282701964,
1483
+ "eval_runtime": 117.3567,
1484
+ "eval_samples_per_second": 169.739,
1485
+ "eval_steps_per_second": 10.609,
1486
+ "step": 9000
1487
+ },
1488
+ {
1489
+ "epoch": 2.0766406608536028,
1490
+ "grad_norm": 0.267760306596756,
1491
+ "learning_rate": 0.00016005248926355973,
1492
+ "loss": 0.0668,
1493
+ "step": 9050
1494
+ },
1495
+ {
1496
+ "epoch": 2.088113813675998,
1497
+ "grad_norm": 0.16492970287799835,
1498
+ "learning_rate": 0.00015806425958326707,
1499
+ "loss": 0.0676,
1500
+ "step": 9100
1501
+ },
1502
+ {
1503
+ "epoch": 2.0995869664983937,
1504
+ "grad_norm": 0.20092828571796417,
1505
+ "learning_rate": 0.00015607602990297438,
1506
+ "loss": 0.0675,
1507
+ "step": 9150
1508
+ },
1509
+ {
1510
+ "epoch": 2.1110601193207894,
1511
+ "grad_norm": 0.17862418293952942,
1512
+ "learning_rate": 0.00015408780022268173,
1513
+ "loss": 0.07,
1514
+ "step": 9200
1515
+ },
1516
+ {
1517
+ "epoch": 2.122533272143185,
1518
+ "grad_norm": 0.264687716960907,
1519
+ "learning_rate": 0.00015209957054238907,
1520
+ "loss": 0.0721,
1521
+ "step": 9250
1522
+ },
1523
+ {
1524
+ "epoch": 2.1340064249655804,
1525
+ "grad_norm": 0.18594799935817719,
1526
+ "learning_rate": 0.0001501113408620964,
1527
+ "loss": 0.0708,
1528
+ "step": 9300
1529
+ },
1530
+ {
1531
+ "epoch": 2.145479577787976,
1532
+ "grad_norm": 0.23833034932613373,
1533
+ "learning_rate": 0.0001481231111818037,
1534
+ "loss": 0.075,
1535
+ "step": 9350
1536
+ },
1537
+ {
1538
+ "epoch": 2.1569527306103717,
1539
+ "grad_norm": 0.2754266858100891,
1540
+ "learning_rate": 0.00014613488150151105,
1541
+ "loss": 0.0663,
1542
+ "step": 9400
1543
+ },
1544
+ {
1545
+ "epoch": 2.1684258834327674,
1546
+ "grad_norm": 0.24011731147766113,
1547
+ "learning_rate": 0.0001441466518212184,
1548
+ "loss": 0.0711,
1549
+ "step": 9450
1550
+ },
1551
+ {
1552
+ "epoch": 2.179899036255163,
1553
+ "grad_norm": 0.2121812105178833,
1554
+ "learning_rate": 0.00014215842214092573,
1555
+ "loss": 0.0706,
1556
+ "step": 9500
1557
+ },
1558
+ {
1559
+ "epoch": 2.179899036255163,
1560
+ "eval_accuracy": 0.9745226836175251,
1561
+ "eval_f1": 0.944122628074362,
1562
+ "eval_loss": 0.07175323367118835,
1563
+ "eval_precision": 0.938023404048986,
1564
+ "eval_recall": 0.9516652063847191,
1565
+ "eval_runtime": 119.8057,
1566
+ "eval_samples_per_second": 166.269,
1567
+ "eval_steps_per_second": 10.392,
1568
+ "step": 9500
1569
+ },
1570
+ {
1571
+ "epoch": 2.1913721890775584,
1572
+ "grad_norm": 0.22729764878749847,
1573
+ "learning_rate": 0.00014017019246063305,
1574
+ "loss": 0.0693,
1575
+ "step": 9550
1576
+ },
1577
+ {
1578
+ "epoch": 2.202845341899954,
1579
+ "grad_norm": 0.432969868183136,
1580
+ "learning_rate": 0.0001381819627803404,
1581
+ "loss": 0.0727,
1582
+ "step": 9600
1583
+ },
1584
+ {
1585
+ "epoch": 2.2143184947223498,
1586
+ "grad_norm": 0.28356945514678955,
1587
+ "learning_rate": 0.00013619373310004774,
1588
+ "loss": 0.0686,
1589
+ "step": 9650
1590
+ },
1591
+ {
1592
+ "epoch": 2.2257916475447455,
1593
+ "grad_norm": 0.2591719329357147,
1594
+ "learning_rate": 0.00013420550341975505,
1595
+ "loss": 0.0719,
1596
+ "step": 9700
1597
+ },
1598
+ {
1599
+ "epoch": 2.2372648003671407,
1600
+ "grad_norm": 0.18898649513721466,
1601
+ "learning_rate": 0.00013221727373946237,
1602
+ "loss": 0.074,
1603
+ "step": 9750
1604
+ },
1605
+ {
1606
+ "epoch": 2.2487379531895364,
1607
+ "grad_norm": 0.230307474732399,
1608
+ "learning_rate": 0.0001302290440591697,
1609
+ "loss": 0.0636,
1610
+ "step": 9800
1611
+ },
1612
+ {
1613
+ "epoch": 2.260211106011932,
1614
+ "grad_norm": 0.21404670178890228,
1615
+ "learning_rate": 0.00012824081437887706,
1616
+ "loss": 0.0707,
1617
+ "step": 9850
1618
+ },
1619
+ {
1620
+ "epoch": 2.271684258834328,
1621
+ "grad_norm": 0.182530015707016,
1622
+ "learning_rate": 0.0001262525846985844,
1623
+ "loss": 0.0728,
1624
+ "step": 9900
1625
+ },
1626
+ {
1627
+ "epoch": 2.283157411656723,
1628
+ "grad_norm": 0.31098031997680664,
1629
+ "learning_rate": 0.00012426435501829172,
1630
+ "loss": 0.0666,
1631
+ "step": 9950
1632
+ },
1633
+ {
1634
+ "epoch": 2.2946305644791187,
1635
+ "grad_norm": 0.22960515320301056,
1636
+ "learning_rate": 0.00012227612533799906,
1637
+ "loss": 0.0717,
1638
+ "step": 10000
1639
+ },
1640
+ {
1641
+ "epoch": 2.2946305644791187,
1642
+ "eval_accuracy": 0.9739419406879124,
1643
+ "eval_f1": 0.9426748850468422,
1644
+ "eval_loss": 0.07281766831874847,
1645
+ "eval_precision": 0.932625711260672,
1646
+ "eval_recall": 0.9557954872438175,
1647
+ "eval_runtime": 117.3059,
1648
+ "eval_samples_per_second": 169.812,
1649
+ "eval_steps_per_second": 10.613,
1650
+ "step": 10000
1651
+ },
1652
+ {
1653
+ "epoch": 2.3061037173015144,
1654
+ "grad_norm": 0.23993970453739166,
1655
+ "learning_rate": 0.00012028789565770639,
1656
+ "loss": 0.0675,
1657
+ "step": 10050
1658
+ },
1659
+ {
1660
+ "epoch": 2.31757687012391,
1661
+ "grad_norm": 0.23594702780246735,
1662
+ "learning_rate": 0.00011829966597741372,
1663
+ "loss": 0.0671,
1664
+ "step": 10100
1665
+ },
1666
+ {
1667
+ "epoch": 2.329050022946306,
1668
+ "grad_norm": 0.4768570065498352,
1669
+ "learning_rate": 0.00011631143629712105,
1670
+ "loss": 0.0714,
1671
+ "step": 10150
1672
+ },
1673
+ {
1674
+ "epoch": 2.340523175768701,
1675
+ "grad_norm": 0.37876570224761963,
1676
+ "learning_rate": 0.00011432320661682838,
1677
+ "loss": 0.0661,
1678
+ "step": 10200
1679
+ },
1680
+ {
1681
+ "epoch": 2.3519963285910968,
1682
+ "grad_norm": 0.2580972909927368,
1683
+ "learning_rate": 0.00011233497693653571,
1684
+ "loss": 0.0696,
1685
+ "step": 10250
1686
+ },
1687
+ {
1688
+ "epoch": 2.3634694814134924,
1689
+ "grad_norm": 0.20318330824375153,
1690
+ "learning_rate": 0.00011034674725624304,
1691
+ "loss": 0.0688,
1692
+ "step": 10300
1693
+ },
1694
+ {
1695
+ "epoch": 2.374942634235888,
1696
+ "grad_norm": 0.2656238079071045,
1697
+ "learning_rate": 0.00010835851757595037,
1698
+ "loss": 0.0656,
1699
+ "step": 10350
1700
+ },
1701
+ {
1702
+ "epoch": 2.386415787058284,
1703
+ "grad_norm": 0.2967742085456848,
1704
+ "learning_rate": 0.00010637028789565771,
1705
+ "loss": 0.0768,
1706
+ "step": 10400
1707
+ },
1708
+ {
1709
+ "epoch": 2.397888939880679,
1710
+ "grad_norm": 0.22500257194042206,
1711
+ "learning_rate": 0.00010438205821536504,
1712
+ "loss": 0.0671,
1713
+ "step": 10450
1714
+ },
1715
+ {
1716
+ "epoch": 2.4093620927030748,
1717
+ "grad_norm": 0.3866559863090515,
1718
+ "learning_rate": 0.00010239382853507237,
1719
+ "loss": 0.0712,
1720
+ "step": 10500
1721
+ },
1722
+ {
1723
+ "epoch": 2.4093620927030748,
1724
+ "eval_accuracy": 0.9745250243790311,
1725
+ "eval_f1": 0.9449194759736153,
1726
+ "eval_loss": 0.0714457556605339,
1727
+ "eval_precision": 0.9347134332940459,
1728
+ "eval_recall": 0.9574427499426126,
1729
+ "eval_runtime": 113.4582,
1730
+ "eval_samples_per_second": 175.571,
1731
+ "eval_steps_per_second": 10.973,
1732
+ "step": 10500
1733
+ },
1734
+ {
1735
+ "epoch": 2.4208352455254705,
1736
+ "grad_norm": 0.2979605495929718,
1737
+ "learning_rate": 0.0001004055988547797,
1738
+ "loss": 0.0679,
1739
+ "step": 10550
1740
+ },
1741
+ {
1742
+ "epoch": 2.432308398347866,
1743
+ "grad_norm": 0.3229621946811676,
1744
+ "learning_rate": 9.841736917448704e-05,
1745
+ "loss": 0.0707,
1746
+ "step": 10600
1747
+ },
1748
+ {
1749
+ "epoch": 2.4437815511702614,
1750
+ "grad_norm": 0.26730015873908997,
1751
+ "learning_rate": 9.642913949419436e-05,
1752
+ "loss": 0.0655,
1753
+ "step": 10650
1754
+ },
1755
+ {
1756
+ "epoch": 2.455254703992657,
1757
+ "grad_norm": 0.3086176812648773,
1758
+ "learning_rate": 9.44409098139017e-05,
1759
+ "loss": 0.0739,
1760
+ "step": 10700
1761
+ },
1762
+ {
1763
+ "epoch": 2.466727856815053,
1764
+ "grad_norm": 0.3094359040260315,
1765
+ "learning_rate": 9.245268013360903e-05,
1766
+ "loss": 0.0717,
1767
+ "step": 10750
1768
+ },
1769
+ {
1770
+ "epoch": 2.4782010096374485,
1771
+ "grad_norm": 0.20422030985355377,
1772
+ "learning_rate": 9.046445045331638e-05,
1773
+ "loss": 0.0691,
1774
+ "step": 10800
1775
+ },
1776
+ {
1777
+ "epoch": 2.4896741624598437,
1778
+ "grad_norm": 0.32366958260536194,
1779
+ "learning_rate": 8.84762207730237e-05,
1780
+ "loss": 0.068,
1781
+ "step": 10850
1782
+ },
1783
+ {
1784
+ "epoch": 2.5011473152822394,
1785
+ "grad_norm": 0.21282616257667542,
1786
+ "learning_rate": 8.648799109273104e-05,
1787
+ "loss": 0.0747,
1788
+ "step": 10900
1789
+ },
1790
+ {
1791
+ "epoch": 2.512620468104635,
1792
+ "grad_norm": 0.24280066788196564,
1793
+ "learning_rate": 8.449976141243837e-05,
1794
+ "loss": 0.0676,
1795
+ "step": 10950
1796
+ },
1797
+ {
1798
+ "epoch": 2.524093620927031,
1799
+ "grad_norm": 0.25853705406188965,
1800
+ "learning_rate": 8.251153173214571e-05,
1801
+ "loss": 0.0658,
1802
+ "step": 11000
1803
+ },
1804
+ {
1805
+ "epoch": 2.524093620927031,
1806
+ "eval_accuracy": 0.9746734286585049,
1807
+ "eval_f1": 0.9448772381464688,
1808
+ "eval_loss": 0.07095114141702652,
1809
+ "eval_precision": 0.9373394177599341,
1810
+ "eval_recall": 0.9540754798723573,
1811
+ "eval_runtime": 115.6195,
1812
+ "eval_samples_per_second": 172.289,
1813
+ "eval_steps_per_second": 10.768,
1814
+ "step": 11000
1815
+ },
1816
+ {
1817
+ "epoch": 2.5355667737494265,
1818
+ "grad_norm": 0.2284245491027832,
1819
+ "learning_rate": 8.052330205185303e-05,
1820
+ "loss": 0.0743,
1821
+ "step": 11050
1822
+ },
1823
+ {
1824
+ "epoch": 2.5470399265718218,
1825
+ "grad_norm": 0.19337309896945953,
1826
+ "learning_rate": 7.853507237156037e-05,
1827
+ "loss": 0.0676,
1828
+ "step": 11100
1829
+ },
1830
+ {
1831
+ "epoch": 2.5585130793942175,
1832
+ "grad_norm": 0.22750115394592285,
1833
+ "learning_rate": 7.65468426912677e-05,
1834
+ "loss": 0.0723,
1835
+ "step": 11150
1836
+ },
1837
+ {
1838
+ "epoch": 2.569986232216613,
1839
+ "grad_norm": 0.2701912820339203,
1840
+ "learning_rate": 7.455861301097503e-05,
1841
+ "loss": 0.0675,
1842
+ "step": 11200
1843
+ },
1844
+ {
1845
+ "epoch": 2.581459385039009,
1846
+ "grad_norm": 0.22987499833106995,
1847
+ "learning_rate": 7.257038333068236e-05,
1848
+ "loss": 0.065,
1849
+ "step": 11250
1850
+ },
1851
+ {
1852
+ "epoch": 2.5929325378614045,
1853
+ "grad_norm": 0.20396412909030914,
1854
+ "learning_rate": 7.05821536503897e-05,
1855
+ "loss": 0.0665,
1856
+ "step": 11300
1857
+ },
1858
+ {
1859
+ "epoch": 2.6044056906838,
1860
+ "grad_norm": 0.17404744029045105,
1861
+ "learning_rate": 6.859392397009703e-05,
1862
+ "loss": 0.0626,
1863
+ "step": 11350
1864
+ },
1865
+ {
1866
+ "epoch": 2.6158788435061955,
1867
+ "grad_norm": 0.24504683911800385,
1868
+ "learning_rate": 6.660569428980435e-05,
1869
+ "loss": 0.0715,
1870
+ "step": 11400
1871
+ },
1872
+ {
1873
+ "epoch": 2.627351996328591,
1874
+ "grad_norm": 0.29088979959487915,
1875
+ "learning_rate": 6.461746460951169e-05,
1876
+ "loss": 0.0634,
1877
+ "step": 11450
1878
+ },
1879
+ {
1880
+ "epoch": 2.6388251491509864,
1881
+ "grad_norm": 0.24859917163848877,
1882
+ "learning_rate": 6.262923492921902e-05,
1883
+ "loss": 0.0718,
1884
+ "step": 11500
1885
+ },
1886
+ {
1887
+ "epoch": 2.6388251491509864,
1888
+ "eval_accuracy": 0.9750416304433823,
1889
+ "eval_f1": 0.9463313377336133,
1890
+ "eval_loss": 0.06995302438735962,
1891
+ "eval_precision": 0.937154559060786,
1892
+ "eval_recall": 0.9573328246594741,
1893
+ "eval_runtime": 116.2346,
1894
+ "eval_samples_per_second": 171.378,
1895
+ "eval_steps_per_second": 10.711,
1896
+ "step": 11500
1897
+ },
1898
+ {
1899
+ "epoch": 2.650298301973382,
1900
+ "grad_norm": 0.38858455419540405,
1901
+ "learning_rate": 6.064100524892636e-05,
1902
+ "loss": 0.0677,
1903
+ "step": 11550
1904
+ },
1905
+ {
1906
+ "epoch": 2.661771454795778,
1907
+ "grad_norm": 0.15558552742004395,
1908
+ "learning_rate": 5.865277556863369e-05,
1909
+ "loss": 0.0683,
1910
+ "step": 11600
1911
+ },
1912
+ {
1913
+ "epoch": 2.6732446076181735,
1914
+ "grad_norm": 0.2536437511444092,
1915
+ "learning_rate": 5.6664545888341025e-05,
1916
+ "loss": 0.0725,
1917
+ "step": 11650
1918
+ },
1919
+ {
1920
+ "epoch": 2.684717760440569,
1921
+ "grad_norm": 0.22305089235305786,
1922
+ "learning_rate": 5.4676316208048355e-05,
1923
+ "loss": 0.0682,
1924
+ "step": 11700
1925
+ },
1926
+ {
1927
+ "epoch": 2.6961909132629645,
1928
+ "grad_norm": 0.25250253081321716,
1929
+ "learning_rate": 5.268808652775569e-05,
1930
+ "loss": 0.0717,
1931
+ "step": 11750
1932
+ },
1933
+ {
1934
+ "epoch": 2.70766406608536,
1935
+ "grad_norm": 0.21804587543010712,
1936
+ "learning_rate": 5.069985684746302e-05,
1937
+ "loss": 0.0675,
1938
+ "step": 11800
1939
+ },
1940
+ {
1941
+ "epoch": 2.719137218907756,
1942
+ "grad_norm": 0.28288906812667847,
1943
+ "learning_rate": 4.871162716717036e-05,
1944
+ "loss": 0.0639,
1945
+ "step": 11850
1946
+ },
1947
+ {
1948
+ "epoch": 2.7306103717301515,
1949
+ "grad_norm": 0.22967451810836792,
1950
+ "learning_rate": 4.672339748687769e-05,
1951
+ "loss": 0.0674,
1952
+ "step": 11900
1953
+ },
1954
+ {
1955
+ "epoch": 2.7420835245525472,
1956
+ "grad_norm": 0.23140451312065125,
1957
+ "learning_rate": 4.473516780658501e-05,
1958
+ "loss": 0.0671,
1959
+ "step": 11950
1960
+ },
1961
+ {
1962
+ "epoch": 2.7535566773749425,
1963
+ "grad_norm": 0.32377928495407104,
1964
+ "learning_rate": 4.274693812629235e-05,
1965
+ "loss": 0.0637,
1966
+ "step": 12000
1967
+ },
1968
+ {
1969
+ "epoch": 2.7535566773749425,
1970
+ "eval_accuracy": 0.9755069738307545,
1971
+ "eval_f1": 0.9476076338095303,
1972
+ "eval_loss": 0.06893511861562729,
1973
+ "eval_precision": 0.9417873864638041,
1974
+ "eval_recall": 0.9544925493289708,
1975
+ "eval_runtime": 115.4256,
1976
+ "eval_samples_per_second": 172.579,
1977
+ "eval_steps_per_second": 10.786,
1978
+ "step": 12000
1979
+ },
1980
+ {
1981
+ "epoch": 2.765029830197338,
1982
+ "grad_norm": 0.24531525373458862,
1983
+ "learning_rate": 4.075870844599968e-05,
1984
+ "loss": 0.0617,
1985
+ "step": 12050
1986
+ },
1987
+ {
1988
+ "epoch": 2.776502983019734,
1989
+ "grad_norm": 0.27357715368270874,
1990
+ "learning_rate": 3.8770478765707014e-05,
1991
+ "loss": 0.0673,
1992
+ "step": 12100
1993
+ },
1994
+ {
1995
+ "epoch": 2.7879761358421296,
1996
+ "grad_norm": 0.28870201110839844,
1997
+ "learning_rate": 3.6782249085414344e-05,
1998
+ "loss": 0.0711,
1999
+ "step": 12150
2000
+ },
2001
+ {
2002
+ "epoch": 2.7994492886645252,
2003
+ "grad_norm": 0.2304583042860031,
2004
+ "learning_rate": 3.479401940512168e-05,
2005
+ "loss": 0.0648,
2006
+ "step": 12200
2007
+ },
2008
+ {
2009
+ "epoch": 2.8109224414869205,
2010
+ "grad_norm": 0.24561718106269836,
2011
+ "learning_rate": 3.280578972482901e-05,
2012
+ "loss": 0.07,
2013
+ "step": 12250
2014
+ },
2015
+ {
2016
+ "epoch": 2.822395594309316,
2017
+ "grad_norm": 0.2914511263370514,
2018
+ "learning_rate": 3.081756004453635e-05,
2019
+ "loss": 0.0669,
2020
+ "step": 12300
2021
+ },
2022
+ {
2023
+ "epoch": 2.833868747131712,
2024
+ "grad_norm": 0.1773723065853119,
2025
+ "learning_rate": 2.8829330364243677e-05,
2026
+ "loss": 0.0725,
2027
+ "step": 12350
2028
+ },
2029
+ {
2030
+ "epoch": 2.845341899954107,
2031
+ "grad_norm": 0.23746098577976227,
2032
+ "learning_rate": 2.684110068395101e-05,
2033
+ "loss": 0.0675,
2034
+ "step": 12400
2035
+ },
2036
+ {
2037
+ "epoch": 2.856815052776503,
2038
+ "grad_norm": 0.30285367369651794,
2039
+ "learning_rate": 2.4852871003658343e-05,
2040
+ "loss": 0.0643,
2041
+ "step": 12450
2042
+ },
2043
+ {
2044
+ "epoch": 2.8682882055988985,
2045
+ "grad_norm": 0.25162991881370544,
2046
+ "learning_rate": 2.2864641323365676e-05,
2047
+ "loss": 0.0692,
2048
+ "step": 12500
2049
+ },
2050
+ {
2051
+ "epoch": 2.8682882055988985,
2052
+ "eval_accuracy": 0.9753543561805701,
2053
+ "eval_f1": 0.9467074104568793,
2054
+ "eval_loss": 0.06883265823125839,
2055
+ "eval_precision": 0.9384069122677029,
2056
+ "eval_recall": 0.9563160157904436,
2057
+ "eval_runtime": 118.2482,
2058
+ "eval_samples_per_second": 168.459,
2059
+ "eval_steps_per_second": 10.529,
2060
+ "step": 12500
2061
+ },
2062
+ {
2063
+ "epoch": 2.879761358421294,
2064
+ "grad_norm": 0.22222265601158142,
2065
+ "learning_rate": 2.087641164307301e-05,
2066
+ "loss": 0.0671,
2067
+ "step": 12550
2068
+ },
2069
+ {
2070
+ "epoch": 2.89123451124369,
2071
+ "grad_norm": 0.30242499709129333,
2072
+ "learning_rate": 1.8888181962780343e-05,
2073
+ "loss": 0.0678,
2074
+ "step": 12600
2075
+ },
2076
+ {
2077
+ "epoch": 2.902707664066085,
2078
+ "grad_norm": 0.42658179998397827,
2079
+ "learning_rate": 1.6899952282487673e-05,
2080
+ "loss": 0.0693,
2081
+ "step": 12650
2082
+ },
2083
+ {
2084
+ "epoch": 2.914180816888481,
2085
+ "grad_norm": 0.2844005823135376,
2086
+ "learning_rate": 1.4911722602195006e-05,
2087
+ "loss": 0.0665,
2088
+ "step": 12700
2089
+ },
2090
+ {
2091
+ "epoch": 2.9256539697108765,
2092
+ "grad_norm": 0.18663829565048218,
2093
+ "learning_rate": 1.2923492921902337e-05,
2094
+ "loss": 0.0662,
2095
+ "step": 12750
2096
+ },
2097
+ {
2098
+ "epoch": 2.9371271225332722,
2099
+ "grad_norm": 0.35708916187286377,
2100
+ "learning_rate": 1.093526324160967e-05,
2101
+ "loss": 0.0684,
2102
+ "step": 12800
2103
+ },
2104
+ {
2105
+ "epoch": 2.948600275355668,
2106
+ "grad_norm": 0.2069770097732544,
2107
+ "learning_rate": 8.947033561317004e-06,
2108
+ "loss": 0.067,
2109
+ "step": 12850
2110
+ },
2111
+ {
2112
+ "epoch": 2.960073428178063,
2113
+ "grad_norm": 0.27548667788505554,
2114
+ "learning_rate": 6.958803881024336e-06,
2115
+ "loss": 0.0663,
2116
+ "step": 12900
2117
+ },
2118
+ {
2119
+ "epoch": 2.971546581000459,
2120
+ "grad_norm": 0.27818095684051514,
2121
+ "learning_rate": 4.970574200731669e-06,
2122
+ "loss": 0.0664,
2123
+ "step": 12950
2124
+ },
2125
+ {
2126
+ "epoch": 2.9830197338228546,
2127
+ "grad_norm": 0.22553269565105438,
2128
+ "learning_rate": 2.982344520439001e-06,
2129
+ "loss": 0.0688,
2130
+ "step": 13000
2131
+ },
2132
+ {
2133
+ "epoch": 2.9830197338228546,
2134
+ "eval_accuracy": 0.9755989657579363,
2135
+ "eval_f1": 0.9475172260787175,
2136
+ "eval_loss": 0.06789490580558777,
2137
+ "eval_precision": 0.9400606792625981,
2138
+ "eval_recall": 0.9562012408624608,
2139
+ "eval_runtime": 114.6472,
2140
+ "eval_samples_per_second": 173.75,
2141
+ "eval_steps_per_second": 10.859,
2142
+ "step": 13000
2143
+ },
2144
+ {
2145
+ "epoch": 2.9944928866452503,
2146
+ "grad_norm": 0.19997993111610413,
2147
+ "learning_rate": 9.941148401463338e-07,
2148
+ "loss": 0.0641,
2149
+ "step": 13050
2150
+ }
2151
+ ],
2152
+ "logging_steps": 50,
2153
+ "max_steps": 13074,
2154
+ "num_input_tokens_seen": 0,
2155
+ "num_train_epochs": 3,
2156
+ "save_steps": 1000,
2157
+ "stateful_callbacks": {
2158
+ "TrainerControl": {
2159
+ "args": {
2160
+ "should_epoch_stop": false,
2161
+ "should_evaluate": false,
2162
+ "should_log": false,
2163
+ "should_save": true,
2164
+ "should_training_stop": true
2165
+ },
2166
+ "attributes": {}
2167
+ }
2168
+ },
2169
+ "total_flos": 3.138440975520091e+16,
2170
+ "train_batch_size": 16,
2171
+ "trial_name": null,
2172
+ "trial_params": null
2173
+ }
checkpoint-13074/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dd103f98dee7758a7916a783307af9f65932119d66eedade7204a203817a6cc
3
+ size 5841
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0f778871ce8a609f6f785396c85ddcc7b142bad44db1595a8c5baec5144a16fa
3
- size 5777
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dd103f98dee7758a7916a783307af9f65932119d66eedade7204a203817a6cc
3
+ size 5841