Create handler.py
Browse files- handler.py +42 -0
handler.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
import torch
|
| 3 |
+
from accelerate import Accelerator
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def softmax(x):
|
| 9 |
+
z = x - max(x)
|
| 10 |
+
numerator = np.exp(z)
|
| 11 |
+
denominator = np.sum(numerator)
|
| 12 |
+
softmax = numerator/denominator
|
| 13 |
+
return softmax
|
| 14 |
+
|
| 15 |
+
class EndpointHandler():
|
| 16 |
+
def __init__(self, path=""):
|
| 17 |
+
self.accelerator = Accelerator()
|
| 18 |
+
self.device = self.accelerator.device
|
| 19 |
+
self.model = AutoModelForCausalLM.from_pretrained(path, trust_remote_code=True, device_map="auto")
|
| 20 |
+
self.model = self.accelerator.prepare(self.model)
|
| 21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 22 |
+
self.options_tokens = [self.tokenizer.encode(choice)[-1] for choice in ["A", "B", "C", "D"]]
|
| 23 |
+
|
| 24 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 25 |
+
"""
|
| 26 |
+
data args:
|
| 27 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
| 28 |
+
kwargss
|
| 29 |
+
Return:
|
| 30 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
| 31 |
+
"""
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
prompt = data.pop("prompt")
|
| 34 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
| 35 |
+
input_size = inputs['input_ids'].size(1)
|
| 36 |
+
input_ids = inputs["input_ids"].to(self.device)
|
| 37 |
+
outputs = self.model(**inputs)
|
| 38 |
+
last_token_logits = outputs.logits[:, -1, :]
|
| 39 |
+
options_tokens_logits = last_token_logits[:, self.options_tokens].detach().cpu().numpy()
|
| 40 |
+
conf = softmax(options_tokens_logits[0])
|
| 41 |
+
pred = np.argmax(options_tokens_logits[0])
|
| 42 |
+
return [{"pred": pred, "conf":conf}]
|