Update config.json
Browse files- config.json +224 -208
config.json
CHANGED
|
@@ -1,58 +1,133 @@
|
|
| 1 |
{
|
|
|
|
|
|
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"XLMWithLMHeadModel"
|
| 4 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"dump_path": "/checkpoint/aconneau/dumped/xlm_17_100_big.3/16656237",
|
| 6 |
-
"
|
| 7 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
"exp_id": "16656237",
|
|
|
|
| 9 |
"fp16": true,
|
| 10 |
-
"amp": 2,
|
| 11 |
-
"encoder_only": true,
|
| 12 |
-
"emb_dim": 1280,
|
| 13 |
-
"n_layers": 16,
|
| 14 |
-
"n_heads": 16,
|
| 15 |
-
"dropout": 0.1,
|
| 16 |
-
"attention_dropout": 0.1,
|
| 17 |
"gelu_activation": true,
|
| 18 |
-
"
|
| 19 |
-
"sinusoidal_embeddings": false,
|
| 20 |
-
"use_lang_emb": false,
|
| 21 |
-
"use_memory": false,
|
| 22 |
-
"asm": false,
|
| 23 |
-
"context_size": 0,
|
| 24 |
-
"word_pred": 0.15,
|
| 25 |
-
"sample_alpha": 0.5,
|
| 26 |
-
"word_mask_keep_rand": "0.8,0.1,0.1",
|
| 27 |
-
"word_shuffle": 0.0,
|
| 28 |
-
"word_dropout": 0.0,
|
| 29 |
-
"word_blank": 0.0,
|
| 30 |
-
"data_path": "/private/home/aconneau/projects/XLM/data/wiki/17/175k",
|
| 31 |
-
"lgs": "en-fr-es-de-it-pt-nl-sv-pl-ru-ar-tr-zh-ja-ko-hi-vi",
|
| 32 |
-
"max_vocab": 200000,
|
| 33 |
-
"min_count": 0,
|
| 34 |
-
"lg_sampling_factor": 0.7,
|
| 35 |
-
"bptt": 256,
|
| 36 |
-
"max_len": 200,
|
| 37 |
"group_by_size": true,
|
| 38 |
-
"
|
| 39 |
-
"
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
"lambda_ae": 1.0,
|
| 53 |
-
"
|
| 54 |
"lambda_bt": 1.0,
|
| 55 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
"mlm_steps": [
|
| 57 |
[
|
| 58 |
"en",
|
|
@@ -123,198 +198,94 @@
|
|
| 123 |
null
|
| 124 |
]
|
| 125 |
],
|
| 126 |
-
"
|
| 127 |
-
"ae_steps": [],
|
| 128 |
-
"bt_steps": [],
|
| 129 |
-
"pc_steps": [],
|
| 130 |
-
"reload_emb": "",
|
| 131 |
-
"reload_model": "/checkpoint/aconneau/dumped/xlm_17_100_240_big_model_upper.2/14884510/best-valid_zh_mlm_ppl.pth",
|
| 132 |
-
"reload_checkpoint": "",
|
| 133 |
-
"beam_size": 1,
|
| 134 |
-
"length_penalty": 1,
|
| 135 |
-
"early_stopping": false,
|
| 136 |
-
"eval_bleu": false,
|
| 137 |
-
"eval_only": false,
|
| 138 |
-
"debug_train": false,
|
| 139 |
-
"debug_slurm": false,
|
| 140 |
-
"debug": false,
|
| 141 |
-
"local_rank": 0,
|
| 142 |
-
"master_port": 14148,
|
| 143 |
-
"langs": [
|
| 144 |
-
"en",
|
| 145 |
-
"fr",
|
| 146 |
-
"es",
|
| 147 |
-
"de",
|
| 148 |
-
"it",
|
| 149 |
-
"pt",
|
| 150 |
-
"nl",
|
| 151 |
-
"sv",
|
| 152 |
-
"pl",
|
| 153 |
-
"ru",
|
| 154 |
-
"ar",
|
| 155 |
-
"tr",
|
| 156 |
-
"zh",
|
| 157 |
-
"ja",
|
| 158 |
-
"ko",
|
| 159 |
-
"hi",
|
| 160 |
-
"vi"
|
| 161 |
-
],
|
| 162 |
-
"id2lang": {
|
| 163 |
-
"0": "ar",
|
| 164 |
-
"1": "de",
|
| 165 |
-
"2": "en",
|
| 166 |
-
"3": "es",
|
| 167 |
-
"4": "fr",
|
| 168 |
-
"5": "hi",
|
| 169 |
-
"6": "it",
|
| 170 |
-
"7": "ja",
|
| 171 |
-
"8": "ko",
|
| 172 |
-
"9": "nl",
|
| 173 |
-
"10": "pl",
|
| 174 |
-
"11": "pt",
|
| 175 |
-
"12": "ru",
|
| 176 |
-
"13": "sv",
|
| 177 |
-
"14": "tr",
|
| 178 |
-
"15": "vi",
|
| 179 |
-
"16": "zh"
|
| 180 |
-
},
|
| 181 |
-
"lang2id": {
|
| 182 |
-
"ar": 0,
|
| 183 |
-
"de": 1,
|
| 184 |
-
"en": 2,
|
| 185 |
-
"es": 3,
|
| 186 |
-
"fr": 4,
|
| 187 |
-
"hi": 5,
|
| 188 |
-
"it": 6,
|
| 189 |
-
"ja": 7,
|
| 190 |
-
"ko": 8,
|
| 191 |
-
"nl": 9,
|
| 192 |
-
"pl": 10,
|
| 193 |
-
"pt": 11,
|
| 194 |
-
"ru": 12,
|
| 195 |
-
"sv": 13,
|
| 196 |
-
"tr": 14,
|
| 197 |
-
"vi": 15,
|
| 198 |
-
"zh": 16
|
| 199 |
-
},
|
| 200 |
-
"n_langs": 17,
|
| 201 |
-
"bt_src_langs": [],
|
| 202 |
"mono_dataset": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
"en": {
|
|
|
|
| 204 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.en.pth",
|
| 205 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.en.pth"
|
| 206 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.en.pth"
|
| 207 |
-
},
|
| 208 |
-
"fr": {
|
| 209 |
-
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.fr.pth",
|
| 210 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.fr.pth",
|
| 211 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.fr.pth"
|
| 212 |
},
|
| 213 |
"es": {
|
|
|
|
| 214 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.es.pth",
|
| 215 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.es.pth"
|
| 216 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.es.pth"
|
| 217 |
},
|
| 218 |
-
"
|
| 219 |
-
"
|
| 220 |
-
"
|
| 221 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
},
|
| 223 |
"it": {
|
|
|
|
| 224 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.it.pth",
|
| 225 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.it.pth"
|
| 226 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.it.pth"
|
| 227 |
},
|
| 228 |
-
"
|
| 229 |
-
"
|
| 230 |
-
"
|
| 231 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
},
|
| 233 |
"nl": {
|
|
|
|
| 234 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.nl.pth",
|
| 235 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.nl.pth"
|
| 236 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.nl.pth"
|
| 237 |
-
},
|
| 238 |
-
"sv": {
|
| 239 |
-
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.sv.pth",
|
| 240 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.sv.pth",
|
| 241 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.sv.pth"
|
| 242 |
},
|
| 243 |
"pl": {
|
|
|
|
| 244 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.pl.pth",
|
| 245 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.pl.pth"
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
},
|
| 248 |
"ru": {
|
|
|
|
| 249 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.ru.pth",
|
| 250 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.ru.pth"
|
| 251 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.ru.pth"
|
| 252 |
},
|
| 253 |
-
"
|
| 254 |
-
"
|
| 255 |
-
"
|
| 256 |
-
"
|
| 257 |
},
|
| 258 |
"tr": {
|
|
|
|
| 259 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.tr.pth",
|
| 260 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.tr.pth"
|
| 261 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.tr.pth"
|
| 262 |
-
},
|
| 263 |
-
"zh": {
|
| 264 |
-
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.zh.pth",
|
| 265 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.zh.pth",
|
| 266 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.zh.pth"
|
| 267 |
-
},
|
| 268 |
-
"ja": {
|
| 269 |
-
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.ja.pth",
|
| 270 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.ja.pth",
|
| 271 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.ja.pth"
|
| 272 |
-
},
|
| 273 |
-
"ko": {
|
| 274 |
-
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.ko.pth",
|
| 275 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.ko.pth",
|
| 276 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.ko.pth"
|
| 277 |
-
},
|
| 278 |
-
"hi": {
|
| 279 |
-
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.hi.pth",
|
| 280 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.hi.pth",
|
| 281 |
-
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.hi.pth"
|
| 282 |
},
|
| 283 |
"vi": {
|
|
|
|
| 284 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.vi.pth",
|
| 285 |
-
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.vi.pth"
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
}
|
| 288 |
},
|
| 289 |
-
"para_dataset": {},
|
| 290 |
-
"word_mask": 0.8,
|
| 291 |
-
"word_keep": 0.1,
|
| 292 |
-
"word_rand": 0.1,
|
| 293 |
-
"is_slurm_job": true,
|
| 294 |
-
"n_nodes": 4,
|
| 295 |
-
"node_id": 0,
|
| 296 |
-
"global_rank": 0,
|
| 297 |
-
"world_size": 32,
|
| 298 |
-
"n_gpu_per_node": 8,
|
| 299 |
-
"master_addr": "learnfair1605",
|
| 300 |
-
"is_master": true,
|
| 301 |
-
"multi_node": true,
|
| 302 |
-
"multi_gpu": true,
|
| 303 |
-
"command": "python /private/home/aconneau/workdir/xlm_17_100_big.3/2019_08_10_19_23_42/train.py --n_heads 16 --bt_steps '' --max_vocab 200000 --word_mask_keep_rand '0.8,0.1,0.1' --use_lang_emb false --data_path '/private/home/aconneau/projects/XLM/data/wiki/17/175k' --save_periodic 0 --max_len 200 --bptt 256 --ae_steps '' --fp16 true --share_inout_emb true --sinusoidal_embeddings false --word_shuffle 0 --tokens_per_batch '-1' --accumulate_gradients 4 --validation_metrics '_valid_en_mlm_ppl,_valid_mlm_ppl,_valid_zh_mlm_ppl' --attention_dropout '0.1' --split_data true --max_epoch 100000 --stopping_criterion '_valid_zh_mlm_ppl,25' --dump_path '/checkpoint/aconneau/dumped' --epoch_size 200000 --word_blank 0 --gelu_activation true --n_layers 16 --optimizer 'adam_inverse_sqrt,lr=0.00005,warmup_updates=30000,beta1=0.9,beta2=0.999,weight_decay=0.01,eps=0.000001' --mlm_steps 'en,fr,es,de,it,pt,nl,sv,pl,ru,ar,tr,zh,ja,ko,hi,vi' --eval_bleu false --dropout '0.1' --mt_steps '' --batch_size 16 --word_dropout 0 --reload_model '/checkpoint/aconneau/dumped/xlm_17_100_240_big_model_upper.2/14884510/best-valid_zh_mlm_ppl.pth' --min_count 0 --amp 2 --group_by_size true --asm false --sample_alpha '0.5' --word_pred '0.15' --clip_grad_norm 1 --emb_dim 1280 --encoder_only true --lgs 'en-fr-es-de-it-pt-nl-sv-pl-ru-ar-tr-zh-ja-ko-hi-vi' --clm_steps '' --exp_name 'xlm_17_100_big.3' --lg_sampling_factor '0.7' --eval_only false --exp_id 16656237 --master_port 14148 --exp_id \"16656237\"",
|
| 304 |
-
"n_words": 200000,
|
| 305 |
-
"bos_index": 0,
|
| 306 |
-
"eos_index": 1,
|
| 307 |
-
"pad_index": 2,
|
| 308 |
-
"unk_index": 3,
|
| 309 |
-
"mask_index": 5,
|
| 310 |
-
"lambda_clm_config": null,
|
| 311 |
-
"lambda_mlm_config": null,
|
| 312 |
-
"lambda_pc_config": null,
|
| 313 |
-
"lambda_ae_config": null,
|
| 314 |
-
"lambda_mt_config": null,
|
| 315 |
-
"lambda_bt_config": null,
|
| 316 |
-
"hyp_path": "/checkpoint/aconneau/dumped/xlm_17_100_big.3/16656237/hypotheses",
|
| 317 |
-
"ref_paths": {},
|
| 318 |
"mono_list": [
|
| 319 |
"en",
|
| 320 |
"fr",
|
|
@@ -334,5 +305,50 @@
|
|
| 334 |
"hi",
|
| 335 |
"vi"
|
| 336 |
],
|
| 337 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"accumulate_gradients": 4,
|
| 3 |
+
"ae_steps": [],
|
| 4 |
+
"amp": 2,
|
| 5 |
"architectures": [
|
| 6 |
"XLMWithLMHeadModel"
|
| 7 |
],
|
| 8 |
+
"asm": false,
|
| 9 |
+
"attention_dropout": 0.1,
|
| 10 |
+
"batch_size": 16,
|
| 11 |
+
"beam_size": 1,
|
| 12 |
+
"bos_index": 0,
|
| 13 |
+
"bos_token_id": 0,
|
| 14 |
+
"bptt": 256,
|
| 15 |
+
"bt_src_langs": [],
|
| 16 |
+
"bt_steps": [],
|
| 17 |
+
"causal": false,
|
| 18 |
+
"clip_grad_norm": 1.0,
|
| 19 |
+
"clm_steps": [],
|
| 20 |
+
"command": "python /private/home/aconneau/workdir/xlm_17_100_big.3/2019_08_10_19_23_42/train.py --n_heads 16 --bt_steps '' --max_vocab 200000 --word_mask_keep_rand '0.8,0.1,0.1' --use_lang_emb false --data_path '/private/home/aconneau/projects/XLM/data/wiki/17/175k' --save_periodic 0 --max_len 200 --bptt 256 --ae_steps '' --fp16 true --share_inout_emb true --sinusoidal_embeddings false --word_shuffle 0 --tokens_per_batch '-1' --accumulate_gradients 4 --validation_metrics '_valid_en_mlm_ppl,_valid_mlm_ppl,_valid_zh_mlm_ppl' --attention_dropout '0.1' --split_data true --max_epoch 100000 --stopping_criterion '_valid_zh_mlm_ppl,25' --dump_path '/checkpoint/aconneau/dumped' --epoch_size 200000 --word_blank 0 --gelu_activation true --n_layers 16 --optimizer 'adam_inverse_sqrt,lr=0.00005,warmup_updates=30000,beta1=0.9,beta2=0.999,weight_decay=0.01,eps=0.000001' --mlm_steps 'en,fr,es,de,it,pt,nl,sv,pl,ru,ar,tr,zh,ja,ko,hi,vi' --eval_bleu false --dropout '0.1' --mt_steps '' --batch_size 16 --word_dropout 0 --reload_model '/checkpoint/aconneau/dumped/xlm_17_100_240_big_model_upper.2/14884510/best-valid_zh_mlm_ppl.pth' --min_count 0 --amp 2 --group_by_size true --asm false --sample_alpha '0.5' --word_pred '0.15' --clip_grad_norm 1 --emb_dim 1280 --encoder_only true --lgs 'en-fr-es-de-it-pt-nl-sv-pl-ru-ar-tr-zh-ja-ko-hi-vi' --clm_steps '' --exp_name 'xlm_17_100_big.3' --lg_sampling_factor '0.7' --eval_only false --exp_id 16656237 --master_port 14148 --exp_id \"16656237\"",
|
| 21 |
+
"context_size": 0,
|
| 22 |
+
"data_path": "/private/home/aconneau/projects/XLM/data/wiki/17/175k",
|
| 23 |
+
"debug": false,
|
| 24 |
+
"debug_slurm": false,
|
| 25 |
+
"debug_train": false,
|
| 26 |
+
"dropout": 0.1,
|
| 27 |
"dump_path": "/checkpoint/aconneau/dumped/xlm_17_100_big.3/16656237",
|
| 28 |
+
"emb_dim": 1280,
|
| 29 |
+
"embed_init_std": 0.02209708691207961,
|
| 30 |
+
"encoder_only": true,
|
| 31 |
+
"end_n_top": 5,
|
| 32 |
+
"eos_index": 1,
|
| 33 |
+
"epoch_size": 200000,
|
| 34 |
+
"eval_bleu": false,
|
| 35 |
+
"eval_only": false,
|
| 36 |
"exp_id": "16656237",
|
| 37 |
+
"exp_name": "xlm_17_100_big.3",
|
| 38 |
"fp16": true,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
"gelu_activation": true,
|
| 40 |
+
"global_rank": 0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
"group_by_size": true,
|
| 42 |
+
"hyp_path": "/checkpoint/aconneau/dumped/xlm_17_100_big.3/16656237/hypotheses",
|
| 43 |
+
"id2lang": {
|
| 44 |
+
"0": "ar",
|
| 45 |
+
"1": "de",
|
| 46 |
+
"10": "pl",
|
| 47 |
+
"11": "pt",
|
| 48 |
+
"12": "ru",
|
| 49 |
+
"13": "sv",
|
| 50 |
+
"14": "tr",
|
| 51 |
+
"15": "vi",
|
| 52 |
+
"16": "zh",
|
| 53 |
+
"2": "en",
|
| 54 |
+
"3": "es",
|
| 55 |
+
"4": "fr",
|
| 56 |
+
"5": "hi",
|
| 57 |
+
"6": "it",
|
| 58 |
+
"7": "ja",
|
| 59 |
+
"8": "ko",
|
| 60 |
+
"9": "nl"
|
| 61 |
+
},
|
| 62 |
+
"init_std": 0.02,
|
| 63 |
+
"is_encoder": true,
|
| 64 |
+
"is_master": true,
|
| 65 |
+
"is_slurm_job": true,
|
| 66 |
"lambda_ae": 1.0,
|
| 67 |
+
"lambda_ae_config": null,
|
| 68 |
"lambda_bt": 1.0,
|
| 69 |
+
"lambda_bt_config": null,
|
| 70 |
+
"lambda_clm": 1.0,
|
| 71 |
+
"lambda_clm_config": null,
|
| 72 |
+
"lambda_mlm": 1.0,
|
| 73 |
+
"lambda_mlm_config": null,
|
| 74 |
+
"lambda_mt": 1.0,
|
| 75 |
+
"lambda_mt_config": null,
|
| 76 |
+
"lambda_pc": 1.0,
|
| 77 |
+
"lambda_pc_config": null,
|
| 78 |
+
"lang2id": {
|
| 79 |
+
"ar": 0,
|
| 80 |
+
"de": 1,
|
| 81 |
+
"en": 2,
|
| 82 |
+
"es": 3,
|
| 83 |
+
"fr": 4,
|
| 84 |
+
"hi": 5,
|
| 85 |
+
"it": 6,
|
| 86 |
+
"ja": 7,
|
| 87 |
+
"ko": 8,
|
| 88 |
+
"nl": 9,
|
| 89 |
+
"pl": 10,
|
| 90 |
+
"pt": 11,
|
| 91 |
+
"ru": 12,
|
| 92 |
+
"sv": 13,
|
| 93 |
+
"tr": 14,
|
| 94 |
+
"vi": 15,
|
| 95 |
+
"zh": 16
|
| 96 |
+
},
|
| 97 |
+
"lang_id": 0,
|
| 98 |
+
"langs": [
|
| 99 |
+
"en",
|
| 100 |
+
"fr",
|
| 101 |
+
"es",
|
| 102 |
+
"de",
|
| 103 |
+
"it",
|
| 104 |
+
"pt",
|
| 105 |
+
"nl",
|
| 106 |
+
"sv",
|
| 107 |
+
"pl",
|
| 108 |
+
"ru",
|
| 109 |
+
"ar",
|
| 110 |
+
"tr",
|
| 111 |
+
"zh",
|
| 112 |
+
"ja",
|
| 113 |
+
"ko",
|
| 114 |
+
"hi",
|
| 115 |
+
"vi"
|
| 116 |
+
],
|
| 117 |
+
"layer_norm_eps": 1e-12,
|
| 118 |
+
"lg_sampling_factor": 0.7,
|
| 119 |
+
"lgs": "en-fr-es-de-it-pt-nl-sv-pl-ru-ar-tr-zh-ja-ko-hi-vi",
|
| 120 |
+
"local_rank": 0,
|
| 121 |
+
"mask_index": 5,
|
| 122 |
+
"mask_token_id": 0,
|
| 123 |
+
"master_addr": "learnfair1605",
|
| 124 |
+
"master_port": 14148,
|
| 125 |
+
"max_batch_size": 0,
|
| 126 |
+
"max_epoch": 100000,
|
| 127 |
+
"max_len": 200,
|
| 128 |
+
"max_position_embeddings": 512,
|
| 129 |
+
"max_vocab": 200000,
|
| 130 |
+
"min_count": 0,
|
| 131 |
"mlm_steps": [
|
| 132 |
[
|
| 133 |
"en",
|
|
|
|
| 198 |
null
|
| 199 |
]
|
| 200 |
],
|
| 201 |
+
"model_type": "xlm",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
"mono_dataset": {
|
| 203 |
+
"ar": {
|
| 204 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.ar.pth",
|
| 205 |
+
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.ar.pth",
|
| 206 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.ar.pth"
|
| 207 |
+
},
|
| 208 |
+
"de": {
|
| 209 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.de.pth",
|
| 210 |
+
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.de.pth",
|
| 211 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.de.pth"
|
| 212 |
+
},
|
| 213 |
"en": {
|
| 214 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.en.pth",
|
| 215 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.en.pth",
|
| 216 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.en.pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
},
|
| 218 |
"es": {
|
| 219 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.es.pth",
|
| 220 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.es.pth",
|
| 221 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.es.pth"
|
|
|
|
| 222 |
},
|
| 223 |
+
"fr": {
|
| 224 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.fr.pth",
|
| 225 |
+
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.fr.pth",
|
| 226 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.fr.pth"
|
| 227 |
+
},
|
| 228 |
+
"hi": {
|
| 229 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.hi.pth",
|
| 230 |
+
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.hi.pth",
|
| 231 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.hi.pth"
|
| 232 |
},
|
| 233 |
"it": {
|
| 234 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.it.pth",
|
| 235 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.it.pth",
|
| 236 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.it.pth"
|
|
|
|
| 237 |
},
|
| 238 |
+
"ja": {
|
| 239 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.ja.pth",
|
| 240 |
+
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.ja.pth",
|
| 241 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.ja.pth"
|
| 242 |
+
},
|
| 243 |
+
"ko": {
|
| 244 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.ko.pth",
|
| 245 |
+
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.ko.pth",
|
| 246 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.ko.pth"
|
| 247 |
},
|
| 248 |
"nl": {
|
| 249 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.nl.pth",
|
| 250 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.nl.pth",
|
| 251 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.nl.pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
},
|
| 253 |
"pl": {
|
| 254 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.pl.pth",
|
| 255 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.pl.pth",
|
| 256 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.pl.pth"
|
| 257 |
+
},
|
| 258 |
+
"pt": {
|
| 259 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.pt.pth",
|
| 260 |
+
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.pt.pth",
|
| 261 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.pt.pth"
|
| 262 |
},
|
| 263 |
"ru": {
|
| 264 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.ru.pth",
|
| 265 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.ru.pth",
|
| 266 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.ru.pth"
|
|
|
|
| 267 |
},
|
| 268 |
+
"sv": {
|
| 269 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.sv.pth",
|
| 270 |
+
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.sv.pth",
|
| 271 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.sv.pth"
|
| 272 |
},
|
| 273 |
"tr": {
|
| 274 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.tr.pth",
|
| 275 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.tr.pth",
|
| 276 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.tr.pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
},
|
| 278 |
"vi": {
|
| 279 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.vi.pth",
|
| 280 |
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.vi.pth",
|
| 281 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.vi.pth"
|
| 282 |
+
},
|
| 283 |
+
"zh": {
|
| 284 |
+
"test": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/test.zh.pth",
|
| 285 |
+
"train": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/train.zh.pth",
|
| 286 |
+
"valid": "/private/home/aconneau/projects/XLM/data/wiki/17/175k/valid.zh.pth"
|
| 287 |
}
|
| 288 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
"mono_list": [
|
| 290 |
"en",
|
| 291 |
"fr",
|
|
|
|
| 305 |
"hi",
|
| 306 |
"vi"
|
| 307 |
],
|
| 308 |
+
"mt_steps": [],
|
| 309 |
+
"multi_gpu": true,
|
| 310 |
+
"multi_node": true,
|
| 311 |
+
"n_gpu_per_node": 8,
|
| 312 |
+
"n_heads": 16,
|
| 313 |
+
"n_langs": 17,
|
| 314 |
+
"n_layers": 16,
|
| 315 |
+
"n_nodes": 4,
|
| 316 |
+
"node_id": 0,
|
| 317 |
+
"optimizer": "adam_inverse_sqrt,lr=0.00005,warmup_updates=30000,beta1=0.9,beta2=0.999,weight_decay=0.01,eps=0.000001",
|
| 318 |
+
"pad_index": 2,
|
| 319 |
+
"pad_token_id": 2,
|
| 320 |
+
"para_dataset": {},
|
| 321 |
+
"para_list": [],
|
| 322 |
+
"pc_steps": [],
|
| 323 |
+
"ref_paths": {},
|
| 324 |
+
"reload_checkpoint": "",
|
| 325 |
+
"reload_emb": "",
|
| 326 |
+
"reload_model": "/checkpoint/aconneau/dumped/xlm_17_100_240_big_model_upper.2/14884510/best-valid_zh_mlm_ppl.pth",
|
| 327 |
+
"sample_alpha": 0.5,
|
| 328 |
+
"save_periodic": 0,
|
| 329 |
+
"share_inout_emb": true,
|
| 330 |
+
"sinusoidal_embeddings": false,
|
| 331 |
+
"split_data": true,
|
| 332 |
+
"start_n_top": 5,
|
| 333 |
+
"stopping_criterion": "_valid_zh_mlm_ppl,25",
|
| 334 |
+
"summary_activation": null,
|
| 335 |
+
"summary_first_dropout": 0.1,
|
| 336 |
+
"summary_proj_to_labels": true,
|
| 337 |
+
"summary_type": "first",
|
| 338 |
+
"summary_use_proj": true,
|
| 339 |
+
"tokens_per_batch": -1,
|
| 340 |
+
"unk_index": 3,
|
| 341 |
+
"use_lang_emb": false,
|
| 342 |
+
"use_memory": false,
|
| 343 |
+
"validation_metrics": "_valid_en_mlm_ppl,_valid_mlm_ppl,_valid_zh_mlm_ppl",
|
| 344 |
+
"vocab_size": 200000,
|
| 345 |
+
"word_blank": 0.0,
|
| 346 |
+
"word_dropout": 0.0,
|
| 347 |
+
"word_keep": 0.1,
|
| 348 |
+
"word_mask": 0.8,
|
| 349 |
+
"word_mask_keep_rand": "0.8,0.1,0.1",
|
| 350 |
+
"word_pred": 0.15,
|
| 351 |
+
"word_rand": 0.1,
|
| 352 |
+
"word_shuffle": 0.0,
|
| 353 |
+
"world_size": 32
|
| 354 |
}
|