File size: 11,466 Bytes
7542075 4db6bb4 7542075 4db6bb4 7542075 4db6bb4 7542075 7e45369 4db6bb4 7542075 4db6bb4 7542075 4db6bb4 7542075 4db6bb4 7542075 4db6bb4 7542075 4db6bb4 7542075 4db6bb4 7542075 4db6bb4 7542075 4db6bb4 7542075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
license: apache-2.0
language:
- grc
datasets:
- Ericu950/Papyri_1
base_model:
- meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: transformers
tags:
- papyrology
- textual criticism
- philology
- Ancient Greek
- mergekit
- merge
---
# Papy_2_Llama-3.1-8B-Instruct_text
This is a finetuned version Llama-3.1-8B-Instruct specialized on reconstructing spans of 1–20 missing characters in ancient Greek documentary papyri. In spans of 1–10 missing characters it did so with a Character Error Rate of 14.9%, a top-1 accuracy of 73.5%, and top-20 of 85.9% on a test set of 7,811 papyrus editions. It replaces Papy_1_Llama-3.1-8B-Instruct_text.
See https://arxiv.org/abs/2409.13870.
## Usage
To run the model on a GPU with large memory capacity, follow these steps:
### 1. Download and load the model
```python
import json
from transformers import pipeline, AutoTokenizer, LlamaForCausalLM
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
import torch
import warnings
warnings.filterwarnings("ignore", message=".*copying from a non-meta parameter in the checkpoint*")
model_id = "Ericu950/Papy_2_Llama-3.1-8B-Instruct_text"
with init_empty_weights():
model = LlamaForCausalLM.from_pretrained(model_id)
model = load_checkpoint_and_dispatch(
model,
model_id,
device_map="auto",
offload_folder="offload",
offload_state_dict=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
)
```
### 2. Run inference on a papyrus fragment of your choice
```python
papyrus_edition = """
ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------
ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι
εκ τησ γενομενησ και μετηλλαχυιασ αυτου γυναικοσ -------------------------
απο τησ αυτησ πολεωσ εν αγυιαι συγχωρειν ειναι ----------------------------------
--------------------σ αυτωι εξ ησ συνεστιν ------------------------------------
----τησ αυτησ γενεασ την υπαρχουσαν αυτωι οικιαν ------------
------------------ ---------καὶ αιθριον και αυλη απερ ο υιοσ διοκοροσ --------------------------
--------εγραψεν του δ αυτου διοσκορου ειναι ------------------------------------
---------- και προ κατενγεγυηται τα δικαια --------------------------------------
νησ κατα τουσ τησ χωρασ νομουσ· εαν δε μη ---------------------------------------
υπ αυτου τηι του διοσκορου σημαινομενηι -----------------------------------ενοικισμωι του
ημισουσ μερουσ τησ προκειμενησ οικιασ --------------------------------- διοσκοροσ την τουτων αποχην
---------------------------------------------μηδ υπεναντιον τουτοισ επιτελειν μηδε
------------------------------------------------ ανασκευηι κατ αυτησ τιθεσθαι ομολογιαν μηδε
----------------------------------- επιτελεσαι η χωρισ του κυρια ειναι τα διομολογημενα
παραβαινειν, εκτεινειν δε τον παραβησομενον τωι υιωι διοσκορωι η τοισ παρ αυτου καθ εκαστην
εφοδον το τε βλαβοσ και επιτιμον αργυριου δραχμασ 0 και εισ το δημο[7 missing letters] ισασ και μηθεν
ησσον· δ -----ιων ομολογιαν συνεχωρησεν·
"""
system_prompt = "Fill in the missing letters in this papyrus fragment!"
input_messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": papyrus_edition},
]
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = generation_pipeline(
input_messages,
max_new_tokens=10,
num_beams=30, # Set this as high as your memory will allow!
num_return_sequences=10,
early_stopping=True,
)
beam_contents = []
for output in outputs:
generated_text = output.get('generated_text', [])
for item in generated_text:
if item.get('role') == 'assistant':
beam_contents.append(item.get('content'))
real_response = "σιον τασ"
print(f"The masked sequence: {real_response}")
for i, content in enumerate(beam_contents, start=1):
print(f"Suggestion {i}: {content}")
```
### Expected Output:
```
The masked sequence: σιον τασ
Suggestion 1: σιον τασ
Suggestion 2: σιν τασ ι
Suggestion 3: σ τασ ισα
Suggestion 4: σιου τασ
Suggestion 5: συ τασ ισ
Suggestion 6: ιον τασ ι
Suggestion 7: ν τασ ισα
Suggestion 8: σ ισασ κα
Suggestion 9: σασ τασ ι
Suggestion 10: σιωι τασ
```
## Usage on free tier in Google Colab
If you don’t have access to a larger GPU but want to try the model out, you can run it in a quantized format in Google Colab. **The quality of the responses will deteriorate significantly!** Follow these steps:
### Step 1: Connect to free GPU
1. Click Connect arrow_drop_down near the top right of the notebook.
2. Select Change runtime type.
3. In the modal window, select T4 GPU as your hardware accelerator.
4. Click Save.
5. Click the Connect button to connect to your runtime. After some time, the button will present a green checkmark, along with RAM and disk usage graphs. This indicates that a server has successfully been created with your required hardware.
### Step 2: Install Dependencies
```python
!pip install -U bitsandbytes
import os
os._exit(00)
```
### Step 3: Download and quantize the model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained("Ericu950/Papy_2_Llama-3.1-8B-Instruct_text",
device_map = "auto", quantization_config = quant_config)
tokenizer = AutoTokenizer.from_pretrained("Ericu950/Papy_2_Llama-3.1-8B-Instruct_text")
generation_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
)
```
### Step 4: Run inference on a papyrus fragment of your choice
```python
papyrus_edition = """
ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------
ομολογει παυσιριων απολλωνιου του παuσιριωνοσ μητροσ ---------------τωι γεγονοτι αυτωι
εκ τησ γενομενησ και μετηλλαχυιασ αυτου γυναικοσ -------------------------
απο τησ αυτησ πολεωσ εν αγυιαι συγχωρειν ειναι ----------------------------------
--------------------σ αυτωι εξ ησ συνεστιν ------------------------------------
----τησ αυτησ γενεασ την υπαρχουσαν αυτωι οικιαν ------------
------------------ ---------καὶ αιθριον και αυλη απερ ο υιοσ διοκοροσ --------------------------
--------εγραψεν του δ αυτου διοσκορου ειναι ------------------------------------
---------- και προ κατενγεγυηται τα δικαια --------------------------------------
νησ κατα τουσ τησ χωρασ νομουσ· εαν δε μη ---------------------------------------
υπ αυτου τηι του διοσκορου σημαινομενηι -----------------------------------ενοικισμωι του
ημισουσ μερουσ τησ προκειμενησ οικιασ --------------------------------- διοσκοροσ την τουτων αποχην
---------------------------------------------μηδ υπεναντιον τουτοισ επιτελειν μηδε
------------------------------------------------ ανασκευηι κατ αυτησ τιθεσθαι ομολογιαν μηδε
----------------------------------- επιτελεσαι η χωρισ του κυρια ειναι τα διομολογημενα
παραβαινειν, εκτεινειν δε τον παραβησομενον τωι υιωι διοσκορωι η τοισ παρ αυτου καθ εκαστην
εφοδον το τε βλαβοσ και επιτιμον αργυριου δραχμασ 0 και εισ το δημο[7 missing letters] ισασ και μηθεν
ησσον· δ -----ιων ομολογιαν συνεχωρησεν·
"""
system_prompt = "Fill in the missing letters in this papyrus fragment!"
input_messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": papyrus_edition},
]
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = generation_pipeline(
input_messages,
max_new_tokens=10,
num_beams=30, # Set this as high as your memory will allow!
num_return_sequences=10,
early_stopping=True,
)
beam_contents = []
for output in outputs:
generated_text = output.get('generated_text', [])
for item in generated_text:
if item.get('role') == 'assistant':
beam_contents.append(item.get('content'))
real_response = "σιον τασ"
print(f"The masked characters: {real_response}")
for i, content in enumerate(beam_contents, start=1):
print(f"Suggestion {i}: {content}")
```
### Expected Output:
```
The masked characters: σιον τασ
Suggestion 1: σιον τα 00·
Suggestion 2: σιον αυτωι·
Suggestion 3: σιον 00 00
Suggestion 4: σιον και 0·
Suggestion 5: σιον τα 00··
Suggestion 6: σιον τασ 0
Suggestion 7: σιον τα 000·
Suggestion 8: σιον τα 0ο
Suggestion 9: σιον τασασ·
Suggestion 10: σιον τα 00
```
Observe that performance declines! If we change
```python
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
```
in the second cell to
```python
load_in_8bit=True,
```
we get
```
The masked characters: σιον τασ
Suggestion 1: σιον τασ
Suggestion 2: σιν τασ ι
Suggestion 3: σ τασ ισα
Suggestion 4: σιου τασ
Suggestion 5: σ ισασ κα
Suggestion 6: συ τασ ισ
Suggestion 7: σασ τασ ι
Suggestion 8: ν τασ ισα
Suggestion 9: ιον τασ ι
Suggestion 10: σισ τασ ι
```
## Information about configuration for merging
The finetuned model was remerged with Llama-3.1-8B-Instruct using the [TIES](https://arxiv.org/abs/2306.01708) merge method. This did not afect CER or top-1 accuracy, but the effect on top-20 accuracy was positive. The following YAML configuration was used:
```yaml
models:
- model: original # Llama 3.1
- model: DDbDP_reconstructer_5 # A model fintuned on the 95 % of the DDbDP for 11 epochs
parameters:
density: 1.1
weight: 0.5
merge_method: ties
base_model: original # Llama 3.1
parameters:
normalize: true
dtype: bfloat16
```
|