File size: 1,430 Bytes
1497bd5 1afdec1 4a0c155 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 1497bd5 1afdec1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
library_name: transformers
license: apache-2.0
base_model: google/long-t5-tglobal-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: longt5-chunker
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# longt5-chunker
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 6.9488
- Rouge1: 0.3017
- Rouge2: 0.1961
- Rougel: 0.2806
- Rougelsum: 0.2796
- Chunk Count Mae: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.44.2
- Pytorch 2.8.0+cu126
- Datasets 2.20.0
- Tokenizers 0.19.1
|