from typing import Callable, Optional, Union import torch from torch import nn from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.generation import GenerationMixin from transformers.integrations import use_kernel_forward_from_hub from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask from transformers.modeling_flash_attention_utils import FlashAttentionKwargs from transformers.modeling_layers import ( GenericForQuestionAnswering, GenericForSequenceClassification, GenericForTokenClassification, GradientCheckpointingLayer, ) from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple from transformers.utils.generic import check_model_inputs from .configuration_ouro import OuroConfig class OuroMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class OuroAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: OuroConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, current_ut: int = 0, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, current_ut * self.config.num_hidden_layers + self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=self.sliding_window, # main diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights @use_kernel_forward_from_hub("RMSNorm") class OuroRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ OuroRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class OuroDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: OuroConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = OuroAttention(config=config, layer_idx=layer_idx) self.mlp = OuroMLP(config) self.input_layernorm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.input_layernorm_2 = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm_2 = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.attention_type = config.layer_types[layer_idx] def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.input_layernorm_2(hidden_states) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.post_attention_layernorm_2(hidden_states) hidden_states = residual + hidden_states return hidden_states @auto_docstring class OuroPreTrainedModel(PreTrainedModel): config: OuroConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["OuroDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = True _supports_attention_backend = True _can_record_outputs = { "hidden_states": OuroDecoderLayer, "attentions": OuroAttention, } class OuroRotaryEmbedding(nn.Module): def __init__(self, config: OuroConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) @auto_docstring class OuroModel(OuroPreTrainedModel): def __init__(self, config: OuroConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [OuroDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = OuroRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = OuroRotaryEmbedding(config=config) self.gradient_checkpointing = False self.has_sliding_layers = "sliding_attention" in self.config.layer_types self.total_ut_steps = getattr(self.config, "total_ut_steps", 4) self.early_exit_gate = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # It may already have been prepared by e.g. `generate` if not isinstance(causal_mask_mapping := attention_mask, dict): # Prepare mask arguments mask_kwargs = { "config": self.config, "input_embeds": inputs_embeds, "attention_mask": attention_mask, "cache_position": cache_position, "past_key_values": past_key_values, "position_ids": position_ids, } # Create the masks causal_mask_mapping = { "full_attention": create_causal_mask(**mask_kwargs), } # The sliding window alternating layers are not always activated depending on the config if self.has_sliding_layers: causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) hidden_states_list = [] gate_list = [] for current_ut in range(self.total_ut_steps): for decoder_layer in self.layers[: self.config.num_hidden_layers]: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask_mapping[decoder_layer.attention_type], position_ids=position_ids, past_key_value=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, current_ut=current_ut, **kwargs, ) hidden_states = self.norm(hidden_states) hidden_states_list.append(hidden_states) gate_list.append(self.early_exit_gate(hidden_states)) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, ), hidden_states_list, gate_list @auto_docstring class OuroForCausalLM(OuroPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = OuroModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # 分块大小配置 self.chunk_size = getattr(config, 'chunk_size', 2) # 默认分块大小为2 self.early_exit_step = getattr(config, "early_exit_step", None) self.early_exit_threshold = getattr(config, "early_exit_threshold", None) # Initialize weights and apply final processing self.post_init() def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, use_weighted_exit: Optional[bool] = False, # 控制是否使用加权 early exit exit_at_step: Optional[int] = None, exit_threshold: Optional[float] = None, **kwargs: Unpack[TransformersKwargs], ) -> CausalLMOutputWithPast: r""" Args: use_weighted_exit (`bool`, *optional*, defaults to `False`): Whether to use weighted early exit. If `True`, the logits from all UT steps will be averaged according to the exit probability distribution. exit_at_step (`int`, *optional*): Specifies which UT step to exit at. If set, the model will directly use the hidden states from this step to generate logits, ignoring other exit strategies. exit_threshold (`float`, *optional*): The cumulative probability threshold for early exit. When the cumulative exit probability reaches this threshold, the model will exit at that step. Example: ```python >>> from transformers import AutoTokenizer, OuroForCausalLM >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" exit_at_step = exit_at_step if exit_at_step is not None else self.early_exit_step exit_threshold = exit_threshold if exit_threshold is not None else self.early_exit_threshold outputs, hidden_states_list, gate_list = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep def _select_token_positions(tensor: torch.Tensor) -> torch.Tensor: if isinstance(slice_indices, slice): return tensor[:, slice_indices, ...] if isinstance(slice_indices, torch.Tensor): return tensor.index_select(1, slice_indices.to(tensor.device)) raise TypeError(f"Unsupported index type for logits_to_keep: {type(slice_indices)}") stacked_exit_pdf = None if gate_list: pdf_list = [] remaining_prob = torch.ones_like(gate_list[0].squeeze(-1)) for idx, gate_tensor in enumerate(gate_list): lambda_i = torch.sigmoid(gate_tensor.squeeze(-1)) if idx < len(gate_list) - 1: p_i = lambda_i * remaining_prob remaining_prob = remaining_prob * (1.0 - lambda_i) else: p_i = remaining_prob pdf_list.append(p_i) stacked_exit_pdf = torch.stack(pdf_list, dim=2) expected_logits_cache: Optional[torch.Tensor] = None def compute_expected_logits() -> Optional[torch.Tensor]: nonlocal expected_logits_cache if expected_logits_cache is not None: return expected_logits_cache if stacked_exit_pdf is None or not hidden_states_list: return None token_exit_pdf = _select_token_positions(stacked_exit_pdf) expected_logits = None for step_idx, hidden in enumerate(hidden_states_list): step_hidden = _select_token_positions(hidden) step_logits = self.lm_head(step_hidden) weight = token_exit_pdf[..., step_idx].unsqueeze(-1).to(step_logits.dtype) expected_logits = step_logits * weight if expected_logits is None else expected_logits + step_logits * weight expected_logits_cache = expected_logits return expected_logits_cache logits: Optional[torch.Tensor] = None loss: Optional[torch.Tensor] = None if labels is not None: logits = compute_expected_logits() if logits is None: hidden_states = outputs.last_hidden_state logits = self.lm_head(_select_token_positions(hidden_states)) loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) else: if stacked_exit_pdf is not None and hidden_states_list: if exit_at_step is not None and 0 <= exit_at_step < len(hidden_states_list): selected_hidden = hidden_states_list[exit_at_step] logits = self.lm_head(_select_token_positions(selected_hidden)) elif exit_threshold is not None: cumulative_probs = torch.cumsum(stacked_exit_pdf, dim=2) threshold_value = exit_threshold if isinstance(threshold_value, torch.Tensor): threshold_value = threshold_value.to(cumulative_probs.device) threshold_mask = cumulative_probs >= threshold_value exit_steps = torch.argmax(threshold_mask.float(), dim=2) last_step_idx = stacked_exit_pdf.shape[2] - 1 if last_step_idx >= 0: never_exceeded = ~threshold_mask.any(dim=2) exit_steps[never_exceeded] = last_step_idx stacked_hidden = torch.stack(hidden_states_list, dim=2) gather_index = exit_steps.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, 1, stacked_hidden.size(-1)) final_hidden_states = torch.gather(stacked_hidden, 2, gather_index).squeeze(2) logits = self.lm_head(_select_token_positions(final_hidden_states)) elif use_weighted_exit: logits = compute_expected_logits() if logits is None: hidden_states = outputs.last_hidden_state logits = self.lm_head(_select_token_positions(hidden_states)) result = CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return result class OuroForSequenceClassification(GenericForSequenceClassification, OuroPreTrainedModel): pass class OuroForTokenClassification(GenericForTokenClassification, OuroPreTrainedModel): pass class OuroForQuestionAnswering(GenericForQuestionAnswering, OuroPreTrainedModel): base_model_prefix = "transformer" # For BC, where `transformer` was used instead of `model` __all__ = [ "OuroPreTrainedModel", "OuroModel", "OuroForCausalLM", "OuroForSequenceClassification", "OuroForTokenClassification", "OuroForQuestionAnswering", ]