bert-baseline
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3136
- Accuracy: 0.9221
- Precision: 0.4610
- Recall: 0.5
- F1: 0.4797
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.3382 | 1.0 | 90 | 0.2740 | 0.9221 | 0.4610 | 0.5 | 0.4797 |
| 0.3389 | 2.0 | 180 | 0.2669 | 0.9221 | 0.4610 | 0.5 | 0.4797 |
| 0.2656 | 3.0 | 270 | 0.3136 | 0.9221 | 0.4610 | 0.5 | 0.4797 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.1
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 69
Model tree for BenjaminOcampo/bert-baseline
Base model
google-bert/bert-base-uncased