--- library_name: transformers license: mit base_model: roberta-base tags: - named-entity-recognition - kanuri - african-language - pii-detection - token-classification - generated_from_trainer datasets: - Beijuka/Multilingual_PII_NER_dataset metrics: - precision - recall - f1 - accuracy model-index: - name: multilingual-roberta-base-kanuri-ner-v1 results: - task: name: Token Classification type: token-classification dataset: name: Beijuka/Multilingual_PII_NER_dataset type: Beijuka/Multilingual_PII_NER_dataset args: 'split: train+validation+test' metrics: - name: Precision type: precision value: 0.9576167076167076 - name: Recall type: recall value: 0.9301909307875895 - name: F1 type: f1 value: 0.9437046004842615 - name: Accuracy type: accuracy value: 0.9867406100327704 --- # multilingual-roberta-base-kanuri-ner-v1 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the Beijuka/Multilingual_PII_NER_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0957 - Precision: 0.9576 - Recall: 0.9302 - F1: 0.9437 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 301 | 0.1120 | 0.8716 | 0.8372 | 0.8541 | 0.9691 | | 0.187 | 2.0 | 602 | 0.0885 | 0.8735 | 0.9206 | 0.8964 | 0.9750 | | 0.187 | 3.0 | 903 | 0.0975 | 0.8666 | 0.8911 | 0.8787 | 0.9742 | | 0.0664 | 4.0 | 1204 | 0.0992 | 0.8715 | 0.9194 | 0.8948 | 0.9764 | | 0.0458 | 5.0 | 1505 | 0.0900 | 0.9008 | 0.9228 | 0.9116 | 0.9767 | | 0.0458 | 6.0 | 1806 | 0.0900 | 0.9050 | 0.9267 | 0.9157 | 0.9800 | | 0.0311 | 7.0 | 2107 | 0.1075 | 0.8921 | 0.9328 | 0.9120 | 0.9787 | | 0.0311 | 8.0 | 2408 | 0.1353 | 0.8920 | 0.9311 | 0.9111 | 0.9791 | | 0.0215 | 9.0 | 2709 | 0.1167 | 0.9090 | 0.9267 | 0.9177 | 0.9792 | | 0.0109 | 10.0 | 3010 | 0.1201 | 0.9082 | 0.9289 | 0.9184 | 0.9807 | | 0.0109 | 11.0 | 3311 | 0.1304 | 0.9110 | 0.9272 | 0.9191 | 0.9810 | | 0.0064 | 12.0 | 3612 | 0.1823 | 0.8918 | 0.9344 | 0.9126 | 0.9788 | | 0.0064 | 13.0 | 3913 | 0.1507 | 0.9038 | 0.9289 | 0.9162 | 0.9803 | | 0.0042 | 14.0 | 4214 | 0.1763 | 0.8990 | 0.935 | 0.9167 | 0.9807 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4