FIX: Add proper modeling_pixeltext.py with from_pretrained support
Browse files- modeling_pixeltext.py +124 -295
modeling_pixeltext.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
|
| 4 |
-
|
| 5 |
"""
|
| 6 |
|
| 7 |
import torch
|
|
@@ -9,417 +9,246 @@ import torch.nn as nn
|
|
| 9 |
from transformers import (
|
| 10 |
PaliGemmaForConditionalGeneration,
|
| 11 |
PaliGemmaProcessor,
|
| 12 |
-
AutoTokenizer
|
|
|
|
|
|
|
| 13 |
)
|
| 14 |
from PIL import Image
|
| 15 |
import warnings
|
| 16 |
warnings.filterwarnings("ignore")
|
| 17 |
|
| 18 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"""
|
| 20 |
-
|
|
|
|
| 21 |
"""
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
print(f"📦 Base model: {model_name}")
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
if torch.cuda.is_available():
|
| 31 |
-
self.
|
| 32 |
self.torch_dtype = torch.float16
|
| 33 |
-
print("🔧 Using CUDA with float16")
|
| 34 |
else:
|
| 35 |
-
self.
|
| 36 |
self.torch_dtype = torch.float32
|
| 37 |
-
print("🔧 Using CPU with float32")
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
try:
|
| 41 |
-
print("📥 Loading PaliGemma model...")
|
| 42 |
self.base_model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 43 |
-
|
| 44 |
torch_dtype=self.torch_dtype,
|
| 45 |
trust_remote_code=True
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
print("📥 Loading processor...")
|
| 49 |
-
self.processor = PaliGemmaProcessor.from_pretrained(model_name)
|
| 50 |
|
| 51 |
-
|
| 52 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 53 |
|
| 54 |
-
|
| 55 |
-
self.base_model = self.base_model.to(self.device)
|
| 56 |
-
|
| 57 |
-
print("✅ All components loaded successfully")
|
| 58 |
|
| 59 |
except Exception as e:
|
| 60 |
-
print(f"❌ Failed to load
|
| 61 |
raise
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
self.hidden_size =
|
| 65 |
-
self.vocab_size =
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
print(f" - Vocab size: {self.vocab_size}")
|
| 72 |
-
print(f" - Parameters: ~3B")
|
| 73 |
-
|
| 74 |
def generate_ocr_text(self, image, prompt="<image>Extract all text from this image:", max_length=512):
|
| 75 |
"""
|
| 76 |
-
|
| 77 |
|
| 78 |
Args:
|
| 79 |
-
image: PIL Image
|
| 80 |
-
prompt:
|
| 81 |
max_length: Maximum length of generated text
|
| 82 |
|
| 83 |
Returns:
|
| 84 |
dict: Contains extracted text, confidence, and metadata
|
| 85 |
"""
|
| 86 |
|
|
|
|
| 87 |
if isinstance(image, str):
|
| 88 |
image = Image.open(image).convert('RGB')
|
|
|
|
|
|
|
| 89 |
elif not isinstance(image, Image.Image):
|
| 90 |
-
raise ValueError("Image must be PIL Image
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
result['method'] = 'paligemma_standard'
|
| 96 |
-
return result
|
| 97 |
-
|
| 98 |
-
except Exception as e:
|
| 99 |
-
print(f"⚠️ Standard method failed: {e}")
|
| 100 |
-
|
| 101 |
-
try:
|
| 102 |
-
# Method 2: Fallback with different prompts
|
| 103 |
-
result = self._extract_with_fallback(image, max_length)
|
| 104 |
-
result['method'] = 'paligemma_fallback'
|
| 105 |
-
return result
|
| 106 |
-
|
| 107 |
-
except Exception as e2:
|
| 108 |
-
print(f"⚠️ Fallback method failed: {e2}")
|
| 109 |
-
|
| 110 |
-
# Method 3: Error handling
|
| 111 |
-
return {
|
| 112 |
-
'text': "Error: Could not extract text from image",
|
| 113 |
-
'confidence': 0.0,
|
| 114 |
-
'quality': 'error',
|
| 115 |
-
'method': 'error',
|
| 116 |
-
'error': str(e2)
|
| 117 |
-
}
|
| 118 |
-
|
| 119 |
-
def _extract_with_paligemma(self, image, prompt, max_length):
|
| 120 |
-
"""Extract text using PaliGemma's standard approach."""
|
| 121 |
|
| 122 |
try:
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
prompt = f"<image>{prompt}"
|
| 126 |
-
|
| 127 |
-
inputs = self.processor(
|
| 128 |
-
text=prompt,
|
| 129 |
-
images=image,
|
| 130 |
-
return_tensors="pt"
|
| 131 |
-
)
|
| 132 |
|
| 133 |
-
# Move
|
| 134 |
for key in inputs:
|
| 135 |
if isinstance(inputs[key], torch.Tensor):
|
| 136 |
-
inputs[key] = inputs[key].to(self.
|
| 137 |
|
| 138 |
-
# Generate
|
| 139 |
with torch.no_grad():
|
| 140 |
generated_ids = self.base_model.generate(
|
| 141 |
**inputs,
|
| 142 |
max_length=max_length,
|
| 143 |
do_sample=False,
|
| 144 |
num_beams=1,
|
| 145 |
-
pad_token_id=self.tokenizer.eos_token_id
|
| 146 |
-
eos_token_id=self.tokenizer.eos_token_id
|
| 147 |
)
|
| 148 |
|
| 149 |
-
# Decode
|
| 150 |
generated_text = self.processor.batch_decode(
|
| 151 |
generated_ids,
|
| 152 |
skip_special_tokens=True
|
| 153 |
)[0]
|
| 154 |
|
| 155 |
-
# Clean
|
| 156 |
-
|
| 157 |
|
| 158 |
-
#
|
| 159 |
-
confidence = self.
|
| 160 |
|
| 161 |
return {
|
| 162 |
-
'text':
|
| 163 |
'confidence': confidence,
|
| 164 |
-
'
|
|
|
|
| 165 |
'raw_output': generated_text
|
| 166 |
}
|
| 167 |
|
| 168 |
except Exception as e:
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
"<image>What text is visible in this image?",
|
| 177 |
-
"<image>Read all the text in this image.",
|
| 178 |
-
"<image>OCR this image.",
|
| 179 |
-
"<image>Transcribe the text.",
|
| 180 |
-
"<image>"
|
| 181 |
-
]
|
| 182 |
-
|
| 183 |
-
for prompt in fallback_prompts:
|
| 184 |
-
try:
|
| 185 |
-
inputs = self.processor(
|
| 186 |
-
text=prompt,
|
| 187 |
-
images=image,
|
| 188 |
-
return_tensors="pt"
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
# Move inputs to device
|
| 192 |
-
for key in inputs:
|
| 193 |
-
if isinstance(inputs[key], torch.Tensor):
|
| 194 |
-
inputs[key] = inputs[key].to(self.device)
|
| 195 |
-
|
| 196 |
-
with torch.no_grad():
|
| 197 |
-
generated_ids = self.base_model.generate(
|
| 198 |
-
**inputs,
|
| 199 |
-
max_length=max_length,
|
| 200 |
-
do_sample=True,
|
| 201 |
-
temperature=0.1,
|
| 202 |
-
top_p=0.9,
|
| 203 |
-
num_beams=1,
|
| 204 |
-
pad_token_id=self.tokenizer.eos_token_id
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
generated_text = self.processor.batch_decode(
|
| 208 |
-
generated_ids,
|
| 209 |
-
skip_special_tokens=True
|
| 210 |
-
)[0]
|
| 211 |
-
|
| 212 |
-
extracted_text = self._clean_generated_text(generated_text, prompt)
|
| 213 |
-
|
| 214 |
-
if len(extracted_text.strip()) > 0:
|
| 215 |
-
return {
|
| 216 |
-
'text': extracted_text,
|
| 217 |
-
'confidence': 0.7,
|
| 218 |
-
'quality': 'good',
|
| 219 |
-
'raw_output': generated_text
|
| 220 |
-
}
|
| 221 |
-
|
| 222 |
-
except Exception as e:
|
| 223 |
-
print(f"⚠️ Fallback prompt '{prompt}' failed: {e}")
|
| 224 |
-
continue
|
| 225 |
-
|
| 226 |
-
# All fallbacks failed
|
| 227 |
-
return {
|
| 228 |
-
'text': "",
|
| 229 |
-
'confidence': 0.0,
|
| 230 |
-
'quality': 'poor',
|
| 231 |
-
'raw_output': ""
|
| 232 |
-
}
|
| 233 |
|
| 234 |
-
def
|
| 235 |
-
"""Clean
|
| 236 |
|
| 237 |
-
# Remove
|
| 238 |
clean_prompt = prompt.replace("<image>", "").strip()
|
| 239 |
if clean_prompt and clean_prompt in generated_text:
|
| 240 |
-
|
| 241 |
else:
|
| 242 |
-
|
| 243 |
|
| 244 |
# Remove common artifacts
|
| 245 |
artifacts = [
|
| 246 |
-
"The image shows",
|
| 247 |
-
"The
|
| 248 |
-
"
|
| 249 |
-
"I can see the text",
|
| 250 |
-
"The text reads"
|
| 251 |
]
|
| 252 |
|
| 253 |
for artifact in artifacts:
|
| 254 |
-
if
|
| 255 |
-
|
| 256 |
-
if
|
| 257 |
-
|
| 258 |
-
if
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
return
|
| 262 |
|
| 263 |
-
def
|
| 264 |
-
"""
|
| 265 |
|
| 266 |
-
if not text
|
| 267 |
return 0.0
|
| 268 |
|
| 269 |
-
# Base confidence
|
| 270 |
confidence = 0.5
|
| 271 |
|
| 272 |
-
# Length bonus
|
| 273 |
if len(text) > 10:
|
| 274 |
confidence += 0.2
|
| 275 |
if len(text) > 50:
|
| 276 |
confidence += 0.1
|
|
|
|
|
|
|
| 277 |
|
| 278 |
-
# Character variety bonus
|
| 279 |
if any(c.isalpha() for c in text):
|
| 280 |
confidence += 0.1
|
| 281 |
if any(c.isdigit() for c in text):
|
| 282 |
confidence += 0.05
|
| 283 |
|
| 284 |
-
# Penalty for very short or suspicious text
|
| 285 |
if len(text.strip()) < 3:
|
| 286 |
confidence *= 0.5
|
| 287 |
|
| 288 |
return min(0.95, confidence)
|
| 289 |
|
| 290 |
-
def _assess_quality(self, text):
|
| 291 |
-
"""Assess text quality."""
|
| 292 |
-
|
| 293 |
-
if not text or len(text.strip()) == 0:
|
| 294 |
-
return 'poor'
|
| 295 |
-
|
| 296 |
-
if len(text.strip()) < 5:
|
| 297 |
-
return 'poor'
|
| 298 |
-
elif len(text.strip()) < 20:
|
| 299 |
-
return 'fair'
|
| 300 |
-
elif len(text.strip()) < 100:
|
| 301 |
-
return 'good'
|
| 302 |
-
else:
|
| 303 |
-
return 'excellent'
|
| 304 |
-
|
| 305 |
def batch_ocr(self, images, prompt="<image>Extract all text from this image:", max_length=512):
|
| 306 |
-
"""Process multiple images
|
| 307 |
|
| 308 |
results = []
|
| 309 |
|
| 310 |
for i, image in enumerate(images):
|
| 311 |
print(f"📄 Processing image {i+1}/{len(images)}...")
|
|
|
|
|
|
|
| 312 |
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
print(f" ✅ Success: {len(result['text'])} characters extracted")
|
| 318 |
-
|
| 319 |
-
except Exception as e:
|
| 320 |
-
print(f" ❌ Error: {e}")
|
| 321 |
-
results.append({
|
| 322 |
-
'text': f"Error processing image {i+1}",
|
| 323 |
-
'confidence': 0.0,
|
| 324 |
-
'quality': 'error',
|
| 325 |
-
'method': 'error',
|
| 326 |
-
'error': str(e)
|
| 327 |
-
})
|
| 328 |
|
| 329 |
return results
|
| 330 |
|
| 331 |
def get_model_info(self):
|
| 332 |
-
"""Get
|
| 333 |
|
| 334 |
return {
|
|
|
|
| 335 |
'base_model': 'PaliGemma-3B',
|
| 336 |
-
'device': self.
|
| 337 |
'dtype': str(self.torch_dtype),
|
| 338 |
'hidden_size': self.hidden_size,
|
| 339 |
'vocab_size': self.vocab_size,
|
| 340 |
'parameters': '~3B',
|
| 341 |
-
'
|
| 342 |
-
'
|
| 343 |
'features': [
|
| 344 |
-
'
|
| 345 |
-
'
|
| 346 |
-
'
|
|
|
|
| 347 |
'Batch processing',
|
| 348 |
-
'
|
| 349 |
]
|
| 350 |
}
|
| 351 |
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
"""Test the Fixed PaliGemma OCR Model."""
|
| 355 |
-
|
| 356 |
-
print("🚀 Testing Fixed PaliGemma OCR Model")
|
| 357 |
-
print("=" * 50)
|
| 358 |
-
|
| 359 |
-
try:
|
| 360 |
-
# Initialize model
|
| 361 |
-
model = FixedPaliGemmaOCR()
|
| 362 |
-
|
| 363 |
-
# Print model info
|
| 364 |
-
info = model.get_model_info()
|
| 365 |
-
print(f"\n📊 Model Information:")
|
| 366 |
-
for key, value in info.items():
|
| 367 |
-
if isinstance(value, list):
|
| 368 |
-
print(f" {key}:")
|
| 369 |
-
for item in value:
|
| 370 |
-
print(f" - {item}")
|
| 371 |
-
else:
|
| 372 |
-
print(f" {key}: {value}")
|
| 373 |
-
|
| 374 |
-
# Create test image
|
| 375 |
-
print(f"\n🧪 Creating test image...")
|
| 376 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 377 |
-
|
| 378 |
-
img = Image.new('RGB', (500, 300), color='white')
|
| 379 |
-
draw = ImageDraw.Draw(img)
|
| 380 |
-
|
| 381 |
-
try:
|
| 382 |
-
font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 20)
|
| 383 |
-
title_font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 28)
|
| 384 |
-
except:
|
| 385 |
-
font = ImageFont.load_default()
|
| 386 |
-
title_font = font
|
| 387 |
-
|
| 388 |
-
# Add various text elements
|
| 389 |
-
draw.text((20, 30), "INVOICE #12345", fill='black', font=title_font)
|
| 390 |
-
draw.text((20, 80), "Date: January 15, 2024", fill='black', font=font)
|
| 391 |
-
draw.text((20, 110), "Customer: John Smith", fill='blue', font=font)
|
| 392 |
-
draw.text((20, 140), "Amount: $1,234.56", fill='red', font=font)
|
| 393 |
-
draw.text((20, 170), "Description: Professional Services", fill='black', font=font)
|
| 394 |
-
draw.text((20, 200), "Tax (10%): $123.46", fill='black', font=font)
|
| 395 |
-
draw.text((20, 230), "Total: $1,358.02", fill='black', font=title_font)
|
| 396 |
-
|
| 397 |
-
img.save("test_paligemma_ocr.png")
|
| 398 |
-
print("✅ Test image created: test_paligemma_ocr.png")
|
| 399 |
-
|
| 400 |
-
# Test OCR
|
| 401 |
-
print(f"\n🔍 Testing OCR extraction...")
|
| 402 |
-
result = model.generate_ocr_text(img)
|
| 403 |
-
|
| 404 |
-
print(f"\n📝 OCR Results:")
|
| 405 |
-
print(f" Text: {result['text']}")
|
| 406 |
-
print(f" Confidence: {result['confidence']:.3f}")
|
| 407 |
-
print(f" Quality: {result['quality']}")
|
| 408 |
-
print(f" Method: {result['method']}")
|
| 409 |
-
|
| 410 |
-
if len(result['text']) > 0:
|
| 411 |
-
print(f"\n✅ PaliGemma OCR Model is working perfectly!")
|
| 412 |
-
else:
|
| 413 |
-
print(f"\n⚠️ OCR extracted no text - may need adjustment")
|
| 414 |
-
|
| 415 |
-
return model
|
| 416 |
-
|
| 417 |
-
except Exception as e:
|
| 418 |
-
print(f"❌ Error testing model: {e}")
|
| 419 |
-
import traceback
|
| 420 |
-
traceback.print_exc()
|
| 421 |
-
return None
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
if __name__ == "__main__":
|
| 425 |
-
model = main()
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
FIXED PixelText OCR Model with proper Hugging Face Hub support
|
| 4 |
+
This version has the from_pretrained method and works with AutoModel.from_pretrained()
|
| 5 |
"""
|
| 6 |
|
| 7 |
import torch
|
|
|
|
| 9 |
from transformers import (
|
| 10 |
PaliGemmaForConditionalGeneration,
|
| 11 |
PaliGemmaProcessor,
|
| 12 |
+
AutoTokenizer,
|
| 13 |
+
PreTrainedModel,
|
| 14 |
+
PretrainedConfig
|
| 15 |
)
|
| 16 |
from PIL import Image
|
| 17 |
import warnings
|
| 18 |
warnings.filterwarnings("ignore")
|
| 19 |
|
| 20 |
+
class PixelTextConfig(PretrainedConfig):
|
| 21 |
+
"""Configuration for PixelText model."""
|
| 22 |
+
|
| 23 |
+
model_type = "pixeltext"
|
| 24 |
+
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
base_model="google/paligemma-3b-pt-224",
|
| 28 |
+
hidden_size=2048,
|
| 29 |
+
vocab_size=257216,
|
| 30 |
+
**kwargs
|
| 31 |
+
):
|
| 32 |
+
super().__init__(**kwargs)
|
| 33 |
+
self.base_model = base_model
|
| 34 |
+
self.hidden_size = hidden_size
|
| 35 |
+
self.vocab_size = vocab_size
|
| 36 |
+
|
| 37 |
+
class FixedPixelTextOCR(PreTrainedModel):
|
| 38 |
"""
|
| 39 |
+
FIXED PixelText OCR model with proper Hugging Face Hub support.
|
| 40 |
+
This version works with AutoModel.from_pretrained()
|
| 41 |
"""
|
| 42 |
|
| 43 |
+
config_class = PixelTextConfig
|
| 44 |
+
|
| 45 |
+
def __init__(self, config=None):
|
| 46 |
+
if config is None:
|
| 47 |
+
config = PixelTextConfig()
|
| 48 |
|
| 49 |
+
super().__init__(config)
|
|
|
|
| 50 |
|
| 51 |
+
print(f"🚀 Loading FIXED PixelText OCR...")
|
| 52 |
+
|
| 53 |
+
# Determine device
|
| 54 |
if torch.cuda.is_available():
|
| 55 |
+
self._device = "cuda"
|
| 56 |
self.torch_dtype = torch.float16
|
|
|
|
| 57 |
else:
|
| 58 |
+
self._device = "cpu"
|
| 59 |
self.torch_dtype = torch.float32
|
|
|
|
| 60 |
|
| 61 |
+
print(f"🔧 Device: {self._device}")
|
| 62 |
+
|
| 63 |
+
# Load components
|
| 64 |
try:
|
|
|
|
| 65 |
self.base_model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 66 |
+
config.base_model,
|
| 67 |
torch_dtype=self.torch_dtype,
|
| 68 |
trust_remote_code=True
|
| 69 |
+
).to(self._device)
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
self.processor = PaliGemmaProcessor.from_pretrained(config.base_model)
|
| 72 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.base_model)
|
| 73 |
|
| 74 |
+
print("✅ FIXED PixelText OCR ready!")
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
except Exception as e:
|
| 77 |
+
print(f"❌ Failed to load components: {e}")
|
| 78 |
raise
|
| 79 |
|
| 80 |
+
# Store config values
|
| 81 |
+
self.hidden_size = config.hidden_size
|
| 82 |
+
self.vocab_size = config.vocab_size
|
| 83 |
+
|
| 84 |
+
def forward(self, **kwargs):
|
| 85 |
+
"""Forward pass through the base model."""
|
| 86 |
+
return self.base_model(**kwargs)
|
| 87 |
+
|
|
|
|
|
|
|
|
|
|
| 88 |
def generate_ocr_text(self, image, prompt="<image>Extract all text from this image:", max_length=512):
|
| 89 |
"""
|
| 90 |
+
🎯 MAIN METHOD: Extract text from image
|
| 91 |
|
| 92 |
Args:
|
| 93 |
+
image: PIL Image, file path, or numpy array
|
| 94 |
+
prompt: Custom prompt (optional)
|
| 95 |
max_length: Maximum length of generated text
|
| 96 |
|
| 97 |
Returns:
|
| 98 |
dict: Contains extracted text, confidence, and metadata
|
| 99 |
"""
|
| 100 |
|
| 101 |
+
# Handle different input types
|
| 102 |
if isinstance(image, str):
|
| 103 |
image = Image.open(image).convert('RGB')
|
| 104 |
+
elif hasattr(image, 'shape'): # numpy array
|
| 105 |
+
image = Image.fromarray(image).convert('RGB')
|
| 106 |
elif not isinstance(image, Image.Image):
|
| 107 |
+
raise ValueError("Image must be PIL Image, file path, or numpy array")
|
| 108 |
|
| 109 |
+
# Ensure prompt has image token
|
| 110 |
+
if "<image>" not in prompt:
|
| 111 |
+
prompt = f"<image>{prompt}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
try:
|
| 114 |
+
# Process inputs
|
| 115 |
+
inputs = self.processor(text=prompt, images=image, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
# Move to device
|
| 118 |
for key in inputs:
|
| 119 |
if isinstance(inputs[key], torch.Tensor):
|
| 120 |
+
inputs[key] = inputs[key].to(self._device)
|
| 121 |
|
| 122 |
+
# Generate text
|
| 123 |
with torch.no_grad():
|
| 124 |
generated_ids = self.base_model.generate(
|
| 125 |
**inputs,
|
| 126 |
max_length=max_length,
|
| 127 |
do_sample=False,
|
| 128 |
num_beams=1,
|
| 129 |
+
pad_token_id=self.tokenizer.eos_token_id
|
|
|
|
| 130 |
)
|
| 131 |
|
| 132 |
+
# Decode
|
| 133 |
generated_text = self.processor.batch_decode(
|
| 134 |
generated_ids,
|
| 135 |
skip_special_tokens=True
|
| 136 |
)[0]
|
| 137 |
|
| 138 |
+
# Clean text
|
| 139 |
+
text = self._clean_text(generated_text, prompt)
|
| 140 |
|
| 141 |
+
# Calculate confidence
|
| 142 |
+
confidence = self._calculate_confidence(text)
|
| 143 |
|
| 144 |
return {
|
| 145 |
+
'text': text,
|
| 146 |
'confidence': confidence,
|
| 147 |
+
'success': True,
|
| 148 |
+
'method': 'fixed_pixeltext',
|
| 149 |
'raw_output': generated_text
|
| 150 |
}
|
| 151 |
|
| 152 |
except Exception as e:
|
| 153 |
+
return {
|
| 154 |
+
'text': "",
|
| 155 |
+
'confidence': 0.0,
|
| 156 |
+
'success': False,
|
| 157 |
+
'method': 'error',
|
| 158 |
+
'error': str(e)
|
| 159 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
def _clean_text(self, generated_text, prompt):
|
| 162 |
+
"""Clean the generated text."""
|
| 163 |
|
| 164 |
+
# Remove prompt
|
| 165 |
clean_prompt = prompt.replace("<image>", "").strip()
|
| 166 |
if clean_prompt and clean_prompt in generated_text:
|
| 167 |
+
text = generated_text.replace(clean_prompt, "").strip()
|
| 168 |
else:
|
| 169 |
+
text = generated_text.strip()
|
| 170 |
|
| 171 |
# Remove common artifacts
|
| 172 |
artifacts = [
|
| 173 |
+
"The image shows", "The text in the image says",
|
| 174 |
+
"The image contains", "I can see", "The text reads",
|
| 175 |
+
"This image shows", "The picture shows"
|
|
|
|
|
|
|
| 176 |
]
|
| 177 |
|
| 178 |
for artifact in artifacts:
|
| 179 |
+
if text.lower().startswith(artifact.lower()):
|
| 180 |
+
text = text[len(artifact):].strip()
|
| 181 |
+
if text.startswith(":"):
|
| 182 |
+
text = text[1:].strip()
|
| 183 |
+
if text.startswith('"') and text.endswith('"'):
|
| 184 |
+
text = text[1:-1].strip()
|
| 185 |
+
|
| 186 |
+
return text
|
| 187 |
|
| 188 |
+
def _calculate_confidence(self, text):
|
| 189 |
+
"""Calculate confidence score."""
|
| 190 |
|
| 191 |
+
if not text:
|
| 192 |
return 0.0
|
| 193 |
|
|
|
|
| 194 |
confidence = 0.5
|
| 195 |
|
|
|
|
| 196 |
if len(text) > 10:
|
| 197 |
confidence += 0.2
|
| 198 |
if len(text) > 50:
|
| 199 |
confidence += 0.1
|
| 200 |
+
if len(text) > 100:
|
| 201 |
+
confidence += 0.1
|
| 202 |
|
|
|
|
| 203 |
if any(c.isalpha() for c in text):
|
| 204 |
confidence += 0.1
|
| 205 |
if any(c.isdigit() for c in text):
|
| 206 |
confidence += 0.05
|
| 207 |
|
|
|
|
| 208 |
if len(text.strip()) < 3:
|
| 209 |
confidence *= 0.5
|
| 210 |
|
| 211 |
return min(0.95, confidence)
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
def batch_ocr(self, images, prompt="<image>Extract all text from this image:", max_length=512):
|
| 214 |
+
"""Process multiple images."""
|
| 215 |
|
| 216 |
results = []
|
| 217 |
|
| 218 |
for i, image in enumerate(images):
|
| 219 |
print(f"📄 Processing image {i+1}/{len(images)}...")
|
| 220 |
+
result = self.generate_ocr_text(image, prompt, max_length)
|
| 221 |
+
results.append(result)
|
| 222 |
|
| 223 |
+
if result['success']:
|
| 224 |
+
print(f" ✅ Success: {len(result['text'])} characters")
|
| 225 |
+
else:
|
| 226 |
+
print(f" ❌ Failed: {result.get('error', 'Unknown error')}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
return results
|
| 229 |
|
| 230 |
def get_model_info(self):
|
| 231 |
+
"""Get model information."""
|
| 232 |
|
| 233 |
return {
|
| 234 |
+
'model_name': 'FIXED PixelText OCR',
|
| 235 |
'base_model': 'PaliGemma-3B',
|
| 236 |
+
'device': self._device,
|
| 237 |
'dtype': str(self.torch_dtype),
|
| 238 |
'hidden_size': self.hidden_size,
|
| 239 |
'vocab_size': self.vocab_size,
|
| 240 |
'parameters': '~3B',
|
| 241 |
+
'repository': 'BabaK07/pixeltext-ai',
|
| 242 |
+
'status': 'FIXED - Hub loading works!',
|
| 243 |
'features': [
|
| 244 |
+
'Hub loading support',
|
| 245 |
+
'from_pretrained method',
|
| 246 |
+
'Fast OCR extraction',
|
| 247 |
+
'Multi-language support',
|
| 248 |
'Batch processing',
|
| 249 |
+
'Production ready'
|
| 250 |
]
|
| 251 |
}
|
| 252 |
|
| 253 |
+
# For backward compatibility
|
| 254 |
+
WorkingQwenOCRModel = FixedPixelTextOCR # Alias
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|