Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
tags:
|
| 4 |
+
- image-classification
|
| 5 |
+
- ecology
|
| 6 |
+
- fungi
|
| 7 |
+
- FGVC
|
| 8 |
+
library_name: FungiTastic Dataset
|
| 9 |
+
license: cc-by-nc-4.0
|
| 10 |
+
---
|
| 11 |
+
# Model card for BVRA/beit_base_patch16_384.in1k_ft_fungitastic-mini_384
|
| 12 |
+
|
| 13 |
+
## Model Details
|
| 14 |
+
- **Model Type:** Fine-grained classification of fungi species
|
| 15 |
+
- **Model Stats:**
|
| 16 |
+
- Params (M): 86.1
|
| 17 |
+
- Image size: 384 x 384
|
| 18 |
+
- **Papers:**
|
| 19 |
+
- **Original:** --> ???
|
| 20 |
+
- **Train Dataset:** FungiTastic --> https://arxiv.org/pdf/2408.13632
|
| 21 |
+
|
| 22 |
+
## Model Usage
|
| 23 |
+
### Image Embeddings
|
| 24 |
+
```python
|
| 25 |
+
import timm
|
| 26 |
+
import torch
|
| 27 |
+
import torchvision.transforms as T
|
| 28 |
+
from PIL import Image
|
| 29 |
+
from urllib.request import urlopen
|
| 30 |
+
model = timm.create_model("hf-hub:BVRA/beit_base_patch16_384.in1k_ft_fungitastic-mini_384", pretrained=True)
|
| 31 |
+
model = model.eval()
|
| 32 |
+
train_transforms = T.Compose([T.Resize((384, 384)),
|
| 33 |
+
T.ToTensor(),
|
| 34 |
+
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 35 |
+
img = Image.open(PATH_TO_YOUR_IMAGE)
|
| 36 |
+
output = model(train_transforms(img).unsqueeze(0))
|
| 37 |
+
# output is a (1, num_features) shaped tensor
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
## Citation
|
| 41 |
+
```bibtex
|
| 42 |
+
@article{picek2024fungitastic,
|
| 43 |
+
title={FungiTastic: A multi-modal dataset and benchmark for image categorization},
|
| 44 |
+
author={Picek, Lukas and Janouskova, Klara and Sulc, Milan and Matas, Jiri},
|
| 45 |
+
journal={arXiv preprint arXiv:2408.13632},
|
| 46 |
+
year={2024}
|
| 47 |
+
}
|
| 48 |
+
```
|
| 49 |
+
```bibtex
|
| 50 |
+
@InProceedings{Picek_2022_WACV,
|
| 51 |
+
author = {Picek, Luk'a{s} and {S}ulc, Milan and Matas, Ji{r}{'\i} and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
|
| 52 |
+
title = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
|
| 53 |
+
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
|
| 54 |
+
month = {January},
|
| 55 |
+
year = {2022},
|
| 56 |
+
pages = {1525-1535}
|
| 57 |
+
}
|
| 58 |
+
```
|
| 59 |
+
```bibtex
|
| 60 |
+
@article{picek2022automatic,
|
| 61 |
+
title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
|
| 62 |
+
author={Picek, Luk{'a}{{s}} and {{S}}ulc, Milan and Matas, Ji{{r}}{'\i} and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
|
| 63 |
+
journal={Sensors},
|
| 64 |
+
volume={22},
|
| 65 |
+
number={2},
|
| 66 |
+
pages={633},
|
| 67 |
+
year={2022},
|
| 68 |
+
publisher={Multidisciplinary Digital Publishing Institute}
|
| 69 |
+
}
|
| 70 |
+
```
|