Update README.md
Browse files
README.md
CHANGED
|
@@ -7,50 +7,202 @@ tags:
|
|
| 7 |
|
| 8 |
---
|
| 9 |
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
<!--- Describe your model here -->
|
| 15 |
|
| 16 |
-
##
|
| 17 |
|
| 18 |
-
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
```
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
|
|
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
```python
|
| 27 |
-
from
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
model =
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
```
|
| 34 |
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
|
| 41 |
-
|
| 42 |
|
|
|
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
## Full Model Architecture
|
| 46 |
```
|
| 47 |
-
|
| 48 |
-
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 49 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 50 |
-
(2): Normalize()
|
| 51 |
-
)
|
| 52 |
```
|
| 53 |
|
| 54 |
-
## Citing & Authors
|
| 55 |
|
| 56 |
-
|
|
|
|
| 7 |
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# BGE-M3
|
| 11 |
+
In this project, we introduce BGE-M3, which is distinguished for its versatility in Multi-Functionality, Multi-Linguality, and Multi-Granularity.
|
| 12 |
+
- Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
|
| 13 |
+
- Multi-Linguality: It can support more than 100 working languages.
|
| 14 |
+
- Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to 8192 tokens.
|
| 15 |
|
| 16 |
+
**Some suggestions for retrieval pipeline in RAG:**
|
| 17 |
+
We recommend to use following pipeline: hybrid retrieval + re-ranking.
|
| 18 |
+
- Hybrid retrieval leverages the strengths of various methods, offering higher accuracy and stronger generalization capabilities.
|
| 19 |
+
A classic example: using both embedding retrieval and the BM25 algorithm.
|
| 20 |
+
Now, you can try to use BGE-M3, which supports both embedding and sparse retrieval.
|
| 21 |
+
This allows you to obtain token weights (similar to the BM25) without any additional cost when generate dense embeddings.
|
| 22 |
+
- As cross-encoder models, re-ranker demonstrates higher accuracy than bi-encoder embedding model.
|
| 23 |
+
Utilizing the re-ranking model (e.g., [bge-reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker), [cohere-reranker](https://txt.cohere.com/rerank/)) after retrieval can further filter the selected text.
|
| 24 |
|
|
|
|
| 25 |
|
| 26 |
+
## FAQ
|
| 27 |
|
| 28 |
+
**1. Introduction for different retrieval methods**
|
| 29 |
|
| 30 |
+
- Dense retrieval: map the text into a single embedding, e.g., [DPR](https://arxiv.org/abs/2004.04906), [BGE-v1.5](https://github.com/FlagOpen/FlagEmbedding)
|
| 31 |
+
- Sparse retrieval (lexical matching): a vector of size equal to the vocabulary, with the majority of positions set to zero, calculating a weight only for tokens present in the text. e.g., BM25, [unicoil](https://arxiv.org/pdf/2106.14807.pdf), and [splade](https://arxiv.org/abs/2107.05720)
|
| 32 |
+
- Multi-vector retrieval: use multiple vectors to represent a text, e.g., [ColBERT](https://arxiv.org/abs/2004.12832).
|
| 33 |
+
|
| 34 |
+
**2. How to use BGE-M3 in other projects?**
|
| 35 |
+
|
| 36 |
+
For embedding retrieval, you can employ the BGE-M3 model using the same approach as BGE.
|
| 37 |
+
The only difference is that the BGE-M3 model no longer requires adding instructions to the queries.
|
| 38 |
+
For sparse retrieval methods, most open-source libraries currently do not support direct utilization of the BGE-M3 model.
|
| 39 |
+
Contributions from the community are welcome.
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
**3. How to fine-tune bge-M3 model?**
|
| 43 |
+
|
| 44 |
+
You can follow the common in this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)
|
| 45 |
+
to fine-tune the dense embedding.
|
| 46 |
+
|
| 47 |
+
Our code and data for unified fine-tuning (dense, sparse, and multi-vectors) will be released.
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
## Usage
|
| 53 |
+
|
| 54 |
+
Install:
|
| 55 |
```
|
| 56 |
+
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
| 57 |
+
cd FlagEmbedding
|
| 58 |
+
pip install -e .
|
| 59 |
```
|
| 60 |
+
or:
|
| 61 |
+
```
|
| 62 |
+
pip install -U FlagEmbedding
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
### Generate Embedding for text
|
| 68 |
+
|
| 69 |
+
- Dense Embedding
|
| 70 |
+
```python
|
| 71 |
+
from FlagEmbedding import BGEM3FlagModel
|
| 72 |
+
|
| 73 |
+
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
| 74 |
+
|
| 75 |
+
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
| 76 |
+
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
| 77 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
| 78 |
+
|
| 79 |
+
embeddings_1 = model.encode(sentences_1)['dense_vecs']
|
| 80 |
+
embeddings_2 = model.encode(sentences_2)['dense_vecs']
|
| 81 |
+
similarity = embeddings_1 @ embeddings_2.T
|
| 82 |
+
print(similarity)
|
| 83 |
+
# [[0.6265, 0.3477], [0.3499, 0.678 ]]
|
| 84 |
+
```
|
| 85 |
+
You also can use sentence-transformers and huggingface transformers to generate dense embeddings.
|
| 86 |
+
Refer to [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding#usage) for details.
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
- Sparse Embedding (Lexical Weight)
|
| 90 |
+
```python
|
| 91 |
+
from FlagEmbedding import BGEM3FlagModel
|
| 92 |
+
|
| 93 |
+
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
| 94 |
+
|
| 95 |
+
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
| 96 |
+
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
| 97 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
| 98 |
|
| 99 |
+
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
|
| 100 |
+
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
|
| 101 |
|
| 102 |
+
# you can see the weight for each token:
|
| 103 |
+
print(model.convert_id_to_token(output_1['lexical_weights']))
|
| 104 |
+
# [{'What': 0.08356, 'is': 0.0814, 'B': 0.1296, 'GE': 0.252, 'M': 0.1702, '3': 0.2695, '?': 0.04092},
|
| 105 |
+
# {'De': 0.05005, 'fin': 0.1368, 'ation': 0.04498, 'of': 0.0633, 'BM': 0.2515, '25': 0.3335}]
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# compute the scores via lexical mathcing
|
| 109 |
+
lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
|
| 110 |
+
print(lexical_scores)
|
| 111 |
+
# 0.19554901123046875
|
| 112 |
+
|
| 113 |
+
print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
|
| 114 |
+
# 0.0
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
- Multi-Vector (ColBERT)
|
| 118 |
```python
|
| 119 |
+
from FlagEmbedding import BGEM3FlagModel
|
| 120 |
+
|
| 121 |
+
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
|
| 122 |
+
|
| 123 |
+
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
| 124 |
+
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
| 125 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
| 126 |
|
| 127 |
+
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
|
| 128 |
+
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
|
| 129 |
+
|
| 130 |
+
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
|
| 131 |
+
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
|
| 132 |
+
# 0.7797
|
| 133 |
+
# 0.4620
|
| 134 |
```
|
| 135 |
|
| 136 |
|
| 137 |
+
### Compute score for text pairs
|
| 138 |
+
Input a list of text pairs, you can get the scores computed by different methods.
|
| 139 |
+
```python
|
| 140 |
+
from FlagEmbedding import BGEM3FlagModel
|
| 141 |
+
|
| 142 |
+
model = BGEM3FlagModel('BAAI/bge-m3', use_fp16=True)
|
| 143 |
+
|
| 144 |
+
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
|
| 145 |
+
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
|
| 146 |
+
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
|
| 147 |
+
|
| 148 |
+
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
|
| 149 |
+
print(model.compute_score(sentence_pairs))
|
| 150 |
+
# {
|
| 151 |
+
# 'colbert': [0.7796499729156494, 0.4621465802192688, 0.4523794651031494, 0.7898575067520142],
|
| 152 |
+
# 'sparse': [0.05865478515625, 0.0026397705078125, 0.0, 0.0540771484375],
|
| 153 |
+
# 'dense': [0.6259765625, 0.347412109375, 0.349853515625, 0.67822265625],
|
| 154 |
+
# 'sparse+dense': [0.5266395211219788, 0.2692706882953644, 0.2691181004047394, 0.563307523727417],
|
| 155 |
+
# 'colbert+sparse+dense': [0.6366440653800964, 0.3531297743320465, 0.3487969636917114, 0.6618075370788574]
|
| 156 |
+
# }
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
## Evaluation
|
| 163 |
|
| 164 |
+
- Multilingual (Miracl dataset)
|
| 165 |
|
| 166 |
+

|
| 167 |
|
| 168 |
+
- Cross-lingual (MKQA dataset)
|
| 169 |
|
| 170 |
+

|
| 171 |
|
| 172 |
+
- Long Document Retrieval
|
| 173 |
+
|
| 174 |
+

|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
## Training
|
| 178 |
+
- Self-knowledge Distillation: combining multiple outputs from different
|
| 179 |
+
retrieval modes as reward signal to enhance the performance of single mode(especially for sparse retrieval and multi-vec(colbert) retrival)
|
| 180 |
+
- Efficient Batching: Improve the efficiency when fine-tuning on long text.
|
| 181 |
+
The small-batch strategy is simple but effective, which also can used to fine-tune large embedding model.
|
| 182 |
+
- MCLS: A simple method to improve the performance on long text without fine-tuning.
|
| 183 |
+
If you have no enough resource to fine-tuning model with long text, the method is useful.
|
| 184 |
+
|
| 185 |
+
Refer to our [report]() for more details.
|
| 186 |
+
|
| 187 |
+
**The fine-tuning codes and datasets will be open-sourced in the near future.**
|
| 188 |
+
|
| 189 |
+
## Models
|
| 190 |
+
|
| 191 |
+
We release two versions:
|
| 192 |
+
- [BAAI/bge-m3-unsupervised](https://huggingface.co/BAAI/bge-m3-unsupervised): the model after contrastive learning in a large-scale dataset
|
| 193 |
+
- [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3): the final model fine-tuned from BAAI/bge-m3-unsupervised
|
| 194 |
+
|
| 195 |
+
## Acknowledgement
|
| 196 |
+
|
| 197 |
+
Thanks the authors of open-sourced datasets, including Miracl, MKQA, NarritiveQA, etc.
|
| 198 |
+
|
| 199 |
+
## Citation
|
| 200 |
+
|
| 201 |
+
If you find this repository useful, please consider giving a star :star: and citation
|
| 202 |
|
|
|
|
| 203 |
```
|
| 204 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
```
|
| 206 |
|
|
|
|
| 207 |
|
| 208 |
+
|