Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- pl
|
| 4 |
+
tags:
|
| 5 |
+
- audio
|
| 6 |
+
- automatic-speech-recognition
|
| 7 |
+
- transformers.js
|
| 8 |
+
pipeline_tag: automatic-speech-recognition
|
| 9 |
+
license: mit
|
| 10 |
+
library_name: transformers
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Polish Distil-Whisper: distil-large-v3
|
| 14 |
+
|
| 15 |
+
Distil-Whisper was proposed in the paper [Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430).
|
| 16 |
+
|
| 17 |
+
It is a distilled version of the Whisper model that is **3 times faster**, 49% smaller. This is the repository for distil-large-v3-pl, a distilled variant of [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3).
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
## Usage
|
| 21 |
+
|
| 22 |
+
Distil-Whisper is supported in Hugging Face 🤗 Transformers from version 4.35 onwards. To run the model, first
|
| 23 |
+
install the latest version of the Transformers library. For this example, we'll also install 🤗 Datasets to load toy
|
| 24 |
+
audio dataset from the Hugging Face Hub:
|
| 25 |
+
|
| 26 |
+
```bash
|
| 27 |
+
pip install --upgrade pip
|
| 28 |
+
pip install --upgrade transformers accelerate datasets[audio]
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
### Short-Form Transcription
|
| 32 |
+
|
| 33 |
+
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 34 |
+
class to transcribe short-form audio files (< 30-seconds) as follows:
|
| 35 |
+
|
| 36 |
+
```python
|
| 37 |
+
import torch
|
| 38 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 39 |
+
from datasets import load_dataset
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 43 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 44 |
+
|
| 45 |
+
model_id = "Aspik101/distil-whisper-large-v3-pl"
|
| 46 |
+
|
| 47 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 48 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 49 |
+
)
|
| 50 |
+
model.to(device)
|
| 51 |
+
|
| 52 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 53 |
+
|
| 54 |
+
pipe = pipeline(
|
| 55 |
+
"automatic-speech-recognition",
|
| 56 |
+
model=model,
|
| 57 |
+
tokenizer=processor.tokenizer,
|
| 58 |
+
feature_extractor=processor.feature_extractor,
|
| 59 |
+
max_new_tokens=128,
|
| 60 |
+
torch_dtype=torch_dtype,
|
| 61 |
+
device=device,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
dataset = load_dataset("mozilla-foundation/common_voice_13_0", "pl", split="test")
|
| 65 |
+
sample = dataset[0]["audio"]
|
| 66 |
+
|
| 67 |
+
result = pipe(sample)
|
| 68 |
+
print(result["text"])
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
|
| 72 |
+
```diff
|
| 73 |
+
- result = pipe(sample)
|
| 74 |
+
+ result = pipe("audio.mp3")
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
### Long-Form Transcription
|
| 78 |
+
|
| 79 |
+
Distil-Whisper uses a chunked algorithm to transcribe long-form audio files (> 30-seconds). In practice, this chunked long-form algorithm
|
| 80 |
+
is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)).
|
| 81 |
+
|
| 82 |
+
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For Distil-Whisper, a chunk length of 15-seconds
|
| 83 |
+
is optimal. To activate batching, pass the argument `batch_size`:
|
| 84 |
+
|
| 85 |
+
```python
|
| 86 |
+
import torch
|
| 87 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 88 |
+
from datasets import load_dataset
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 92 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 93 |
+
|
| 94 |
+
model_id = "Aspik101/distil-whisper-large-v3-pl"
|
| 95 |
+
|
| 96 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 97 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 98 |
+
)
|
| 99 |
+
model.to(device)
|
| 100 |
+
|
| 101 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 102 |
+
|
| 103 |
+
pipe = pipeline(
|
| 104 |
+
"automatic-speech-recognition",
|
| 105 |
+
model=model,
|
| 106 |
+
tokenizer=processor.tokenizer,
|
| 107 |
+
feature_extractor=processor.feature_extractor,
|
| 108 |
+
max_new_tokens=128,
|
| 109 |
+
chunk_length_s=15,
|
| 110 |
+
batch_size=16,
|
| 111 |
+
torch_dtype=torch_dtype,
|
| 112 |
+
device=device,
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
dataset = load_dataset("mozilla-foundation/common_voice_13_0", "pl", split="test")
|
| 116 |
+
sample = dataset[0]["audio"]
|
| 117 |
+
|
| 118 |
+
result = pipe(sample)
|
| 119 |
+
print(result["text"])
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
<!---
|
| 123 |
+
**Tip:** The pipeline can also be used to transcribe an audio file from a remote URL, for example:
|
| 124 |
+
|
| 125 |
+
```python
|
| 126 |
+
result = pipe("https://huggingface.co/datasets/sanchit-gandhi/librispeech_long/resolve/main/audio.wav")
|
| 127 |
+
```
|
| 128 |
+
--->
|