Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
inference: false
|
| 5 |
+
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
```
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead, AutoModelForCausalLM
|
| 11 |
+
import torch
|
| 12 |
+
if torch.cuda.is_available():
|
| 13 |
+
device = torch.device("cuda")
|
| 14 |
+
else :
|
| 15 |
+
device = "cpu"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained("salesken/grammar_correction")
|
| 19 |
+
model = AutoModelForCausalLM.from_pretrained("salesken/grammar_correction").to(device)
|
| 20 |
+
|
| 21 |
+
input_query="what be the reason for everyone leave the company"
|
| 22 |
+
query= "<|startoftext|> " + input_query + " ~~~"
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device)
|
| 26 |
+
sample_outputs = model.generate(input_ids,
|
| 27 |
+
do_sample=True,
|
| 28 |
+
num_beams=1,
|
| 29 |
+
max_length=128,
|
| 30 |
+
temperature=0.9,
|
| 31 |
+
top_p= 0.7,
|
| 32 |
+
top_k = 5,
|
| 33 |
+
num_return_sequences=3)
|
| 34 |
+
corrected_sentences = []
|
| 35 |
+
for i in range(len(sample_outputs)):
|
| 36 |
+
r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0]
|
| 37 |
+
r = r.split('~~~')[1]
|
| 38 |
+
if r not in corrected_sentences:
|
| 39 |
+
corrected_sentences.append(r)
|
| 40 |
+
|
| 41 |
+
print(corrected_sentences)
|
| 42 |
+
```
|