--- library_name: transformers license: mit base_model: jhu-clsp/mmBERT-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: router-mmBERT-base-v1-text-only results: [] --- # router-mmBERT-base-v1-text-only This model is a fine-tuned version of [jhu-clsp/mmBERT-base](https://huggingface.co/jhu-clsp/mmBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5214 - Accuracy: 0.7443 - Precision: 0.7398 - Recall: 0.7443 - F1: 0.7408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.6159 | 0.4545 | 20 | 0.5460 | 0.7330 | 0.7350 | 0.7330 | 0.7091 | | 2.451 | 0.9091 | 40 | 0.5214 | 0.7443 | 0.7398 | 0.7443 | 0.7408 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu128 - Datasets 4.2.0 - Tokenizers 0.22.1