Upload extract.py with huggingface_hub
Browse files- extract.py +34 -0
extract.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pyarrow.parquet as pq
|
| 3 |
+
|
| 4 |
+
def extract_parquet_files(directory):
|
| 5 |
+
# Create a directory to store the extracted CSV files
|
| 6 |
+
output_directory = "extracted_csv_files"
|
| 7 |
+
os.makedirs(output_directory, exist_ok=True)
|
| 8 |
+
|
| 9 |
+
# Iterate over files in the directory
|
| 10 |
+
for filename in os.listdir(directory):
|
| 11 |
+
# Check if the file has a .parquet extension
|
| 12 |
+
if filename.endswith(".parquet"):
|
| 13 |
+
file_path = os.path.join(directory, filename)
|
| 14 |
+
|
| 15 |
+
# Read the parquet file
|
| 16 |
+
table = pq.read_table(file_path)
|
| 17 |
+
|
| 18 |
+
# Extract the data from the parquet file
|
| 19 |
+
data = table.to_pandas()
|
| 20 |
+
|
| 21 |
+
# Generate the output CSV file path
|
| 22 |
+
csv_filename = os.path.splitext(filename)[0] + ".csv"
|
| 23 |
+
csv_file_path = os.path.join(output_directory, csv_filename)
|
| 24 |
+
|
| 25 |
+
# Save the extracted data as a CSV file
|
| 26 |
+
data.to_csv(csv_file_path, index=False)
|
| 27 |
+
|
| 28 |
+
print(f"Extracted data from {filename} saved as {csv_filename}")
|
| 29 |
+
|
| 30 |
+
# Directory containing the parquet files
|
| 31 |
+
parquet_directory = "hindi"
|
| 32 |
+
|
| 33 |
+
# Call the function to extract parquet files
|
| 34 |
+
extract_parquet_files(parquet_directory)
|