Upload 3 files
Browse files- __init__.py +0 -0
- model.py +916 -0
- splitter.py +45 -0
__init__.py
ADDED
|
File without changes
|
model.py
ADDED
|
@@ -0,0 +1,916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
from collections.abc import Sequence
|
| 3 |
+
from importlib.metadata import PackageNotFoundError, version
|
| 4 |
+
from typing import Callable
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
| 10 |
+
from transformers import PreTrainedModel
|
| 11 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 13 |
+
from transformers.models.llama.modeling_llama import (
|
| 14 |
+
LlamaDecoderLayer,
|
| 15 |
+
LlamaRotaryEmbedding,
|
| 16 |
+
)
|
| 17 |
+
from transformers.utils import ModelOutput
|
| 18 |
+
|
| 19 |
+
from .config import (
|
| 20 |
+
CrossAttentionConfig,
|
| 21 |
+
DecoderHATModelConfig,
|
| 22 |
+
EncoderHATModelConfig,
|
| 23 |
+
HATArchitectureConfig,
|
| 24 |
+
TransformerHATModelConfig,
|
| 25 |
+
)
|
| 26 |
+
from .splitter import HATSplitter
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
transformers_version = version("transformers")
|
| 30 |
+
if transformers_version != "4.46.3":
|
| 31 |
+
print(f"Warning: Expecected transformers version 4.46.3, but found {transformers_version}. Outputs might be different.")
|
| 32 |
+
except PackageNotFoundError:
|
| 33 |
+
print("transformers is not installed")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def sample_argmax(logits: torch.Tensor) -> torch.Tensor:
|
| 37 |
+
return torch.argmax(logits, dim=-1)[:, -1]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
LLAMA_TEMPLATE = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 41 |
+
You are a helpful assistant. You give engaging, well-structured answers to user inquiries.<|eot_id|><|start_header_id|>user<|end_header_id|>
|
| 42 |
+
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class HATCache(Cache):
|
| 46 |
+
encoder_cache: DynamicCache
|
| 47 |
+
backbone_cache: DynamicCache
|
| 48 |
+
decoder_cache: DynamicCache
|
| 49 |
+
|
| 50 |
+
def __init__(self, *args, **kwargs):
|
| 51 |
+
super().__init__(*args, **kwargs)
|
| 52 |
+
self.encoder_cache = DynamicCache()
|
| 53 |
+
self.backbone_cache = DynamicCache()
|
| 54 |
+
self.decoder_cache = DynamicCache()
|
| 55 |
+
|
| 56 |
+
def get_backbone_cache(self) -> DynamicCache:
|
| 57 |
+
return self.backbone_cache
|
| 58 |
+
|
| 59 |
+
def get_decoder_cache(self) -> DynamicCache:
|
| 60 |
+
return self.decoder_cache
|
| 61 |
+
|
| 62 |
+
def get_encoder_cache(self) -> DynamicCache:
|
| 63 |
+
return self.encoder_cache
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def rotate_half(x):
|
| 67 |
+
"""Rotates half the hidden dims of the input."""
|
| 68 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 69 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 70 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def apply_rotary_pos_emb(q, k, q_cos=None, q_sin=None, k_cos=None, k_sin=None, unsqueeze_dim=1):
|
| 74 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 75 |
+
and allows for different sequence lengths.
|
| 76 |
+
Args:
|
| 77 |
+
q (`torch.Tensor`): The query tensor.
|
| 78 |
+
k (`torch.Tensor`): The key tensor.
|
| 79 |
+
q_cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 80 |
+
q_sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 81 |
+
k_cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 82 |
+
k_sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 83 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 84 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze
|
| 85 |
+
cos[position_ids] and sin[position_ids] so that they can be properly
|
| 86 |
+
broadcasted to the dimensions of q and k. For example, note
|
| 87 |
+
that cos[position_ids] and sin[position_ids] have the shape
|
| 88 |
+
[batch_size, seq_len, head_dim]. Then, if q and
|
| 89 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting
|
| 90 |
+
unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids]
|
| 91 |
+
broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 92 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 93 |
+
Returns:
|
| 94 |
+
`tuple(torch.Tensor)` comprising of the query and key
|
| 95 |
+
tensors rotated using the Rotary Position Embedding.
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
q_cos = q_cos.unsqueeze(unsqueeze_dim)
|
| 99 |
+
q_sin = q_sin.unsqueeze(unsqueeze_dim)
|
| 100 |
+
k_cos = k_cos.unsqueeze(unsqueeze_dim)
|
| 101 |
+
k_sin = k_sin.unsqueeze(unsqueeze_dim)
|
| 102 |
+
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
|
| 103 |
+
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
|
| 104 |
+
|
| 105 |
+
return q_embed, k_embed
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class HATBackbone(nn.Module):
|
| 109 |
+
def __init__(self, config: TransformerHATModelConfig, *args, **kwargs):
|
| 110 |
+
super().__init__(*args, **kwargs)
|
| 111 |
+
|
| 112 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
| 113 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
| 114 |
+
|
| 115 |
+
def forward(
|
| 116 |
+
self,
|
| 117 |
+
hidden_states: torch.Tensor,
|
| 118 |
+
position_ids: torch.Tensor | None = None,
|
| 119 |
+
past_key_values: DynamicCache | None = None,
|
| 120 |
+
use_cache: bool | None = False,
|
| 121 |
+
) -> BaseModelOutputWithPast:
|
| 122 |
+
if use_cache and past_key_values is None:
|
| 123 |
+
past_key_values = DynamicCache()
|
| 124 |
+
|
| 125 |
+
if position_ids is None:
|
| 126 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 127 |
+
position_ids = torch.arange(
|
| 128 |
+
past_seen_tokens,
|
| 129 |
+
past_seen_tokens + hidden_states.shape[1],
|
| 130 |
+
device=hidden_states.device,
|
| 131 |
+
).unsqueeze(0)
|
| 132 |
+
|
| 133 |
+
# create position embeddings to be shared across the decoder layers
|
| 134 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 135 |
+
|
| 136 |
+
for backbone_layer in self.layers:
|
| 137 |
+
layer_outputs = backbone_layer(
|
| 138 |
+
hidden_states,
|
| 139 |
+
position_ids=position_ids,
|
| 140 |
+
past_key_value=past_key_values,
|
| 141 |
+
use_cache=use_cache,
|
| 142 |
+
position_embeddings=position_embeddings,
|
| 143 |
+
)
|
| 144 |
+
hidden_states = layer_outputs[0]
|
| 145 |
+
|
| 146 |
+
return CausalLMOutputWithPast(
|
| 147 |
+
hidden_states=hidden_states,
|
| 148 |
+
past_key_values=past_key_values if use_cache else None,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class HATDecoderConnector(nn.Module):
|
| 153 |
+
def __init__(self, backbone_hiden_dim: int, *args, **kwargs):
|
| 154 |
+
super().__init__(*args, **kwargs)
|
| 155 |
+
self.first_word_embedding = torch.nn.Parameter(
|
| 156 |
+
torch.empty(
|
| 157 |
+
1,
|
| 158 |
+
1,
|
| 159 |
+
backbone_hiden_dim,
|
| 160 |
+
device="cuda",
|
| 161 |
+
dtype=torch.bfloat16,
|
| 162 |
+
)
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
def forward(
|
| 166 |
+
self,
|
| 167 |
+
backbone_activations: torch.Tensor,
|
| 168 |
+
):
|
| 169 |
+
activations = backbone_activations.clone()
|
| 170 |
+
activations[:, -1:, :] = self.first_word_embedding
|
| 171 |
+
activations = torch.roll(activations, shifts=1, dims=1)
|
| 172 |
+
return activations
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class RMSNorm(nn.Module):
|
| 176 |
+
def __init__(self, dimensions: int, eps: float, device: torch.device, dtype: torch.dtype = torch.bfloat16, norm_in_fp32: bool = False):
|
| 177 |
+
super().__init__()
|
| 178 |
+
self.eps = eps
|
| 179 |
+
self.weight = torch.nn.Parameter(torch.ones(dimensions, dtype=dtype).to(device))
|
| 180 |
+
self.norm_in_fp32 = norm_in_fp32
|
| 181 |
+
|
| 182 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 183 |
+
original_dtype = x.dtype
|
| 184 |
+
if self.norm_in_fp32:
|
| 185 |
+
x = x.float()
|
| 186 |
+
|
| 187 |
+
out = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
| 188 |
+
|
| 189 |
+
if out.dtype != original_dtype:
|
| 190 |
+
out = out.to(original_dtype)
|
| 191 |
+
|
| 192 |
+
return out * self.weight
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class HATDecoderBlock(nn.Module):
|
| 196 |
+
def __init__(
|
| 197 |
+
self,
|
| 198 |
+
add_cross_attention: bool,
|
| 199 |
+
config: DecoderHATModelConfig,
|
| 200 |
+
layer_idx: int,
|
| 201 |
+
*args,
|
| 202 |
+
**kwargs,
|
| 203 |
+
):
|
| 204 |
+
super().__init__(*args, **kwargs)
|
| 205 |
+
self.add_cross_attention = add_cross_attention
|
| 206 |
+
self.config = config
|
| 207 |
+
self.llama_layer = LlamaDecoderLayer(config, layer_idx)
|
| 208 |
+
self.llama_layer.self_attn.sliding_window = config.sliding_window
|
| 209 |
+
if add_cross_attention:
|
| 210 |
+
self.cross_attention = HATCrossAttention(
|
| 211 |
+
hidden_size=config.cross_attention_config.hidden_size,
|
| 212 |
+
hidden_size_kv=config.cross_attention_config.hidden_size_kv,
|
| 213 |
+
hidden_size_q=config.cross_attention_config.hidden_size_q,
|
| 214 |
+
config=config,
|
| 215 |
+
cross_attention_config=config.cross_attention_config,
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
self.query_norm = RMSNorm(
|
| 219 |
+
config.cross_attention_config.hidden_size_q,
|
| 220 |
+
eps=config.rms_norm_eps,
|
| 221 |
+
device=torch.device("cuda"),
|
| 222 |
+
dtype=torch.bfloat16,
|
| 223 |
+
norm_in_fp32=False,
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
self.kv_norm = RMSNorm(
|
| 227 |
+
config.cross_attention_config.hidden_size_kv,
|
| 228 |
+
eps=config.rms_norm_eps,
|
| 229 |
+
device=torch.device("cuda"),
|
| 230 |
+
dtype=torch.bfloat16,
|
| 231 |
+
norm_in_fp32=False,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
def apply_norm(self, activations):
|
| 235 |
+
return self.query_norm(activations), self.kv_norm(activations)
|
| 236 |
+
|
| 237 |
+
def forward(
|
| 238 |
+
self,
|
| 239 |
+
encoder_activations,
|
| 240 |
+
backbone_activations,
|
| 241 |
+
byte_position_ids,
|
| 242 |
+
word_position_ids,
|
| 243 |
+
cumulative_seq_lengths_per_word,
|
| 244 |
+
position_embeddings,
|
| 245 |
+
past_key_values,
|
| 246 |
+
use_cache,
|
| 247 |
+
):
|
| 248 |
+
if self.add_cross_attention:
|
| 249 |
+
kv_activations = self.kv_norm(backbone_activations)
|
| 250 |
+
q_activations = self.query_norm(encoder_activations)
|
| 251 |
+
|
| 252 |
+
activations = self.cross_attention.forward(
|
| 253 |
+
q_activations=q_activations,
|
| 254 |
+
kv_activations=kv_activations,
|
| 255 |
+
position_ids_q=byte_position_ids,
|
| 256 |
+
position_ids_kv=word_position_ids,
|
| 257 |
+
cumulative_seq_q=cumulative_seq_lengths_per_word,
|
| 258 |
+
cumulative_seq_kv=torch.arange(0, kv_activations.size(1) + 1, device=encoder_activations.device, dtype=torch.int32),
|
| 259 |
+
causal=False,
|
| 260 |
+
)
|
| 261 |
+
encoder_activations = encoder_activations + activations
|
| 262 |
+
|
| 263 |
+
return self.llama_layer.forward(
|
| 264 |
+
hidden_states=encoder_activations,
|
| 265 |
+
position_ids=byte_position_ids,
|
| 266 |
+
position_embeddings=position_embeddings,
|
| 267 |
+
past_key_value=past_key_values,
|
| 268 |
+
use_cache=use_cache,
|
| 269 |
+
)[0]
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class HATDecoder(nn.Module):
|
| 273 |
+
def __init__(self, config: DecoderHATModelConfig, *args, **kwargs):
|
| 274 |
+
super().__init__()
|
| 275 |
+
|
| 276 |
+
self.decoder_layers = nn.Sequential()
|
| 277 |
+
for layer_idx in range(config.num_hidden_layers):
|
| 278 |
+
add_cross_attention = config.cross_attn_every_layer or layer_idx == 0
|
| 279 |
+
self.decoder_layers.add_module(
|
| 280 |
+
str(layer_idx),
|
| 281 |
+
HATDecoderBlock(
|
| 282 |
+
add_cross_attention,
|
| 283 |
+
config,
|
| 284 |
+
layer_idx,
|
| 285 |
+
),
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
| 289 |
+
|
| 290 |
+
def forward(
|
| 291 |
+
self,
|
| 292 |
+
backbone_activations: torch.Tensor,
|
| 293 |
+
activations: torch.Tensor,
|
| 294 |
+
cumulative_seq_lengths_per_word: torch.Tensor | None = None,
|
| 295 |
+
byte_position_ids: torch.Tensor | None = None,
|
| 296 |
+
word_position_ids: torch.Tensor | None = None,
|
| 297 |
+
past_key_values: DynamicCache | None = None,
|
| 298 |
+
use_cache: bool | None = False,
|
| 299 |
+
) -> BaseModelOutputWithPast:
|
| 300 |
+
if use_cache and past_key_values is None:
|
| 301 |
+
past_key_values = DynamicCache()
|
| 302 |
+
|
| 303 |
+
if byte_position_ids is None:
|
| 304 |
+
past_seen_bytes = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 305 |
+
byte_position_ids = torch.arange(
|
| 306 |
+
past_seen_bytes,
|
| 307 |
+
past_seen_bytes + activations.size(1),
|
| 308 |
+
device=activations.device,
|
| 309 |
+
dtype=torch.int32,
|
| 310 |
+
).unsqueeze(0)
|
| 311 |
+
|
| 312 |
+
if cumulative_seq_lengths_per_word is None:
|
| 313 |
+
cumulative_seq_lengths_per_word = torch.tensor([0, byte_position_ids.size(1)], dtype=byte_position_ids.dtype, device=byte_position_ids.device)
|
| 314 |
+
|
| 315 |
+
if word_position_ids is None:
|
| 316 |
+
raise ValueError() # TODO
|
| 317 |
+
|
| 318 |
+
position_embeddings = self.rotary_emb(activations, byte_position_ids)
|
| 319 |
+
|
| 320 |
+
for _, layer in enumerate(self.decoder_layers):
|
| 321 |
+
activations = layer(
|
| 322 |
+
encoder_activations=activations,
|
| 323 |
+
backbone_activations=backbone_activations,
|
| 324 |
+
position_embeddings=position_embeddings,
|
| 325 |
+
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
|
| 326 |
+
byte_position_ids=byte_position_ids,
|
| 327 |
+
word_position_ids=word_position_ids,
|
| 328 |
+
past_key_values=past_key_values,
|
| 329 |
+
use_cache=use_cache,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
return BaseModelOutputWithPast(
|
| 333 |
+
last_hidden_state=activations,
|
| 334 |
+
past_key_values=past_key_values if use_cache else None,
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
class HATCrossAttention(nn.Module):
|
| 339 |
+
def __init__(
|
| 340 |
+
self,
|
| 341 |
+
hidden_size: int,
|
| 342 |
+
hidden_size_q: int,
|
| 343 |
+
hidden_size_kv: int,
|
| 344 |
+
config: EncoderHATModelConfig | DecoderHATModelConfig,
|
| 345 |
+
cross_attention_config: CrossAttentionConfig,
|
| 346 |
+
dtype: torch.dtype = torch.bfloat16,
|
| 347 |
+
):
|
| 348 |
+
super().__init__()
|
| 349 |
+
self.hidden_size = hidden_size
|
| 350 |
+
self.hidden_size_q = hidden_size_q
|
| 351 |
+
self.hidden_size_kv = hidden_size_kv
|
| 352 |
+
self.num_heads = cross_attention_config.num_attention_heads
|
| 353 |
+
self.num_key_value_heads = cross_attention_config.attention_num_kv_heads
|
| 354 |
+
self.num_repeat_kv = cross_attention_config.num_attention_heads // cross_attention_config.attention_num_kv_heads
|
| 355 |
+
self.head_dim = hidden_size // self.num_heads
|
| 356 |
+
|
| 357 |
+
self.q_proj = nn.Linear(
|
| 358 |
+
in_features=hidden_size_q,
|
| 359 |
+
out_features=hidden_size,
|
| 360 |
+
dtype=dtype,
|
| 361 |
+
bias=False,
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
self.k_proj = nn.Linear(
|
| 365 |
+
in_features=hidden_size_kv,
|
| 366 |
+
out_features=hidden_size // self.num_repeat_kv,
|
| 367 |
+
dtype=dtype,
|
| 368 |
+
bias=False,
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
self.v_proj = nn.Linear(
|
| 372 |
+
in_features=hidden_size_kv,
|
| 373 |
+
out_features=hidden_size // self.num_repeat_kv,
|
| 374 |
+
dtype=dtype,
|
| 375 |
+
bias=False,
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
self.o_proj = nn.Linear(in_features=hidden_size, out_features=hidden_size_q, dtype=dtype, bias=False)
|
| 379 |
+
|
| 380 |
+
rope_theta = config.rope_theta
|
| 381 |
+
rope_type = config.rope_scaling["rope_type"]
|
| 382 |
+
|
| 383 |
+
self.rotary_emb = LlamaRotaryEmbedding(dim=self.head_dim, base=rope_theta, rope_type=rope_type)
|
| 384 |
+
|
| 385 |
+
def forward(
|
| 386 |
+
self,
|
| 387 |
+
q_activations: torch.Tensor,
|
| 388 |
+
kv_activations: torch.Tensor,
|
| 389 |
+
position_ids_q: torch.Tensor,
|
| 390 |
+
position_ids_kv: torch.Tensor,
|
| 391 |
+
cumulative_seq_kv: torch.Tensor,
|
| 392 |
+
cumulative_seq_q: torch.Tensor,
|
| 393 |
+
causal: bool = True,
|
| 394 |
+
use_cache: bool = False,
|
| 395 |
+
past_key_value: DynamicCache | None = None,
|
| 396 |
+
):
|
| 397 |
+
q_len = cumulative_seq_q[-1]
|
| 398 |
+
|
| 399 |
+
bsz, _, _ = kv_activations.size()
|
| 400 |
+
query_states = self.q_proj(q_activations)
|
| 401 |
+
key_states = self.k_proj(kv_activations)
|
| 402 |
+
value_states = self.v_proj(kv_activations)
|
| 403 |
+
|
| 404 |
+
# TODO get rid of the double rearrange, this is just for compatibility with scaling
|
| 405 |
+
query_states = rearrange(query_states, "bsz seq_len (h d) -> bsz h seq_len d", h=self.num_heads)
|
| 406 |
+
key_states = rearrange(
|
| 407 |
+
key_states,
|
| 408 |
+
"bsz seq_len (h d) -> bsz h seq_len d",
|
| 409 |
+
h=self.num_key_value_heads,
|
| 410 |
+
)
|
| 411 |
+
value_states = rearrange(
|
| 412 |
+
value_states,
|
| 413 |
+
"bsz seq_len (h d) -> bsz h seq_len d",
|
| 414 |
+
h=self.num_key_value_heads,
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
# WIP: Should word_positions_id respect document boundaries?
|
| 418 |
+
q_cos, q_sin = self.rotary_emb(query_states, position_ids_q)
|
| 419 |
+
k_cos, k_sin = self.rotary_emb(key_states, position_ids_kv)
|
| 420 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, q_cos=q_cos, q_sin=q_sin, k_cos=k_cos, k_sin=k_sin)
|
| 421 |
+
|
| 422 |
+
query_states = rearrange(query_states, "bsz h seq_len d -> (bsz seq_len) h d")
|
| 423 |
+
key_states = rearrange(key_states, "bsz h seq_len d -> (bsz seq_len) h d")
|
| 424 |
+
value_states = rearrange(value_states, "bsz h seq_len d -> (bsz seq_len) h d")
|
| 425 |
+
|
| 426 |
+
attn_output = flash_attn_varlen_func(
|
| 427 |
+
query_states,
|
| 428 |
+
key_states,
|
| 429 |
+
value_states,
|
| 430 |
+
cu_seqlens_q=cumulative_seq_q,
|
| 431 |
+
cu_seqlens_k=cumulative_seq_kv,
|
| 432 |
+
max_seqlen_q=self._get_max_seqlen(cumulative_seq_q),
|
| 433 |
+
max_seqlen_k=self._get_max_seqlen(cumulative_seq_kv),
|
| 434 |
+
causal=False,
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
| 438 |
+
|
| 439 |
+
attn_output = self.o_proj(attn_output)
|
| 440 |
+
return attn_output
|
| 441 |
+
|
| 442 |
+
def _get_max_seqlen(self, cumulative_word_lengths: torch.Tensor):
|
| 443 |
+
diffs = cumulative_word_lengths[1:] - cumulative_word_lengths[:-1]
|
| 444 |
+
return int(diffs.max().item())
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
class HATEncoderConnector(nn.Module):
|
| 448 |
+
def __init__(
|
| 449 |
+
self,
|
| 450 |
+
config: EncoderHATModelConfig,
|
| 451 |
+
backbone_hidden_size: int,
|
| 452 |
+
dtype: torch.dtype = torch.bfloat16,
|
| 453 |
+
*args,
|
| 454 |
+
**kwargs,
|
| 455 |
+
):
|
| 456 |
+
super().__init__(*args, **kwargs)
|
| 457 |
+
self.latent_query = torch.nn.Parameter(
|
| 458 |
+
torch.empty(
|
| 459 |
+
1,
|
| 460 |
+
1,
|
| 461 |
+
backbone_hidden_size,
|
| 462 |
+
device="cuda",
|
| 463 |
+
dtype=dtype,
|
| 464 |
+
)
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
self.cross_attention_encoder_connector = HATCrossAttention(
|
| 468 |
+
hidden_size=config.cross_attention_config.hidden_size,
|
| 469 |
+
hidden_size_q=backbone_hidden_size,
|
| 470 |
+
hidden_size_kv=config.hidden_size,
|
| 471 |
+
config=config,
|
| 472 |
+
cross_attention_config=config.cross_attention_config,
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
def forward(
|
| 476 |
+
self,
|
| 477 |
+
hidden_states: torch.Tensor,
|
| 478 |
+
cumulative_seq_lengths_per_word: torch.Tensor,
|
| 479 |
+
word_position_ids: torch.Tensor,
|
| 480 |
+
byte_position_ids: torch.Tensor,
|
| 481 |
+
):
|
| 482 |
+
q_len = cumulative_seq_lengths_per_word.shape[0] - 1
|
| 483 |
+
latent_query_repeated = self.latent_query.expand(-1, q_len, -1)
|
| 484 |
+
cumulative_seq_lengths_q = torch.arange(
|
| 485 |
+
start=0,
|
| 486 |
+
end=latent_query_repeated.shape[1] + 1,
|
| 487 |
+
step=1,
|
| 488 |
+
device=self.latent_query.device,
|
| 489 |
+
dtype=torch.int32,
|
| 490 |
+
)
|
| 491 |
+
word_embeddings = self.cross_attention_encoder_connector.forward(
|
| 492 |
+
q_activations=latent_query_repeated,
|
| 493 |
+
kv_activations=hidden_states,
|
| 494 |
+
position_ids_q=word_position_ids,
|
| 495 |
+
position_ids_kv=byte_position_ids,
|
| 496 |
+
cumulative_seq_q=cumulative_seq_lengths_q,
|
| 497 |
+
cumulative_seq_kv=cumulative_seq_lengths_per_word,
|
| 498 |
+
)
|
| 499 |
+
return word_embeddings
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
class HATEncoder(nn.Module):
|
| 503 |
+
def __init__(
|
| 504 |
+
self,
|
| 505 |
+
config: EncoderHATModelConfig,
|
| 506 |
+
dtype: torch.dtype = torch.bfloat16,
|
| 507 |
+
*args,
|
| 508 |
+
**kwargs,
|
| 509 |
+
):
|
| 510 |
+
super().__init__(*args, **kwargs)
|
| 511 |
+
self.embedding_layer = nn.Embedding(config.vocab_size, config.hidden_size, dtype=dtype)
|
| 512 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
| 513 |
+
for layer in self.layers:
|
| 514 |
+
layer.self_attn.sliding_window = config.sliding_window
|
| 515 |
+
|
| 516 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
| 517 |
+
|
| 518 |
+
self.word_window_size = config.cross_attention_config.word_window_size
|
| 519 |
+
|
| 520 |
+
def forward(
|
| 521 |
+
self,
|
| 522 |
+
input_ids: torch.Tensor,
|
| 523 |
+
cumulative_seq_lengths_per_word: torch.Tensor | None = None,
|
| 524 |
+
byte_position_ids: torch.Tensor | None = None,
|
| 525 |
+
word_position_ids: torch.Tensor | None = None, # TODO: Remove
|
| 526 |
+
past_key_values: DynamicCache | None = None,
|
| 527 |
+
use_cache: bool | None = False,
|
| 528 |
+
):
|
| 529 |
+
input_embeds = self.embedding_layer(input_ids)
|
| 530 |
+
|
| 531 |
+
if cumulative_seq_lengths_per_word is None:
|
| 532 |
+
cumulative_seq_lengths_per_word = torch.tensor([0, input_embeds.shape[1]], dtype=torch.int32, device=input_ids.device)
|
| 533 |
+
|
| 534 |
+
if use_cache and past_key_values is None:
|
| 535 |
+
past_key_values = DynamicCache()
|
| 536 |
+
|
| 537 |
+
if byte_position_ids is None:
|
| 538 |
+
past_seen_bytes = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 539 |
+
byte_position_ids = torch.arange(
|
| 540 |
+
past_seen_bytes,
|
| 541 |
+
past_seen_bytes + input_embeds.shape[1],
|
| 542 |
+
device=input_embeds.device,
|
| 543 |
+
).unsqueeze(0)
|
| 544 |
+
|
| 545 |
+
if word_position_ids is None:
|
| 546 |
+
raise ValueError() # TODO
|
| 547 |
+
|
| 548 |
+
hidden_states = input_embeds
|
| 549 |
+
|
| 550 |
+
# create position embeddings to be shared across the decoder layers
|
| 551 |
+
position_embeddings = self.rotary_emb(hidden_states, byte_position_ids)
|
| 552 |
+
|
| 553 |
+
for layer in self.layers:
|
| 554 |
+
layer_outputs = layer(
|
| 555 |
+
hidden_states,
|
| 556 |
+
position_ids=byte_position_ids,
|
| 557 |
+
past_key_value=past_key_values,
|
| 558 |
+
use_cache=use_cache,
|
| 559 |
+
position_embeddings=position_embeddings,
|
| 560 |
+
)
|
| 561 |
+
hidden_states = layer_outputs[0]
|
| 562 |
+
|
| 563 |
+
return CausalLMOutputWithPast(
|
| 564 |
+
hidden_states=hidden_states,
|
| 565 |
+
past_key_values=past_key_values if use_cache else None,
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
class HATForCausalLM(PreTrainedModel):
|
| 570 |
+
config_class = HATArchitectureConfig
|
| 571 |
+
_supports_flash_attn_2 = True
|
| 572 |
+
_supports_cache_class = True
|
| 573 |
+
|
| 574 |
+
def __init__(self, config: HATArchitectureConfig, *args, **kwargs):
|
| 575 |
+
super().__init__(config, *args, **kwargs)
|
| 576 |
+
self.config = config
|
| 577 |
+
self.eos_token_id = config.eos_token_id
|
| 578 |
+
self.encoder = HATEncoder(config.encoder_config)
|
| 579 |
+
self.encoder_connector = HATEncoderConnector(config.encoder_config, config.backbone_config.hidden_size)
|
| 580 |
+
self.backbone = HATBackbone(config.backbone_config)
|
| 581 |
+
self.decoder_connector = HATDecoderConnector(config.backbone_config.hidden_size)
|
| 582 |
+
self.decoder = HATDecoder(config.decoder_config)
|
| 583 |
+
self.splitter = HATSplitter(special_token_dict=config.special_token_dict, max_word_size=config.max_word_size)
|
| 584 |
+
self.layer_norm = RMSNorm(config.decoder_config.hidden_size, eps=config.decoder_config.rms_norm_eps, device=torch.device("cuda"), dtype=torch.bfloat16, norm_in_fp32=False)
|
| 585 |
+
self.lm_head = nn.Linear(
|
| 586 |
+
in_features=config.decoder_config.hidden_size,
|
| 587 |
+
out_features=config.decoder_config.vocab_size,
|
| 588 |
+
dtype=torch.bfloat16,
|
| 589 |
+
bias=False,
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
def forward(
|
| 593 |
+
self,
|
| 594 |
+
input_ids: torch.Tensor,
|
| 595 |
+
byte_position_ids: torch.Tensor,
|
| 596 |
+
cumulative_seq_lengths_per_word: torch.Tensor | None = None,
|
| 597 |
+
word_position_ids: torch.Tensor | None = None,
|
| 598 |
+
past_key_values: HATCache | None = None,
|
| 599 |
+
use_cache: bool = False,
|
| 600 |
+
):
|
| 601 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 602 |
+
|
| 603 |
+
if past_key_values is None and use_cache:
|
| 604 |
+
past_key_values = HATCache()
|
| 605 |
+
|
| 606 |
+
encoder_past_key_values = past_key_values.get_encoder_cache() if past_key_values is not None else None
|
| 607 |
+
backbone_past_key_values = past_key_values.get_backbone_cache() if past_key_values is not None else None
|
| 608 |
+
decoder_past_key_values = past_key_values.get_decoder_cache() if past_key_values is not None else None
|
| 609 |
+
|
| 610 |
+
encoder_output: BaseModelOutputWithPast = self.encoder(
|
| 611 |
+
input_ids=input_ids,
|
| 612 |
+
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
|
| 613 |
+
byte_position_ids=byte_position_ids,
|
| 614 |
+
word_position_ids=word_position_ids,
|
| 615 |
+
past_key_values=encoder_past_key_values,
|
| 616 |
+
use_cache=use_cache,
|
| 617 |
+
)
|
| 618 |
+
byte_level_activations = encoder_output.hidden_states
|
| 619 |
+
|
| 620 |
+
encoder_connector_output = self.encoder_connector(
|
| 621 |
+
byte_level_activations,
|
| 622 |
+
cumulative_seq_lengths_per_word,
|
| 623 |
+
word_position_ids,
|
| 624 |
+
byte_position_ids,
|
| 625 |
+
)
|
| 626 |
+
backbone_output: CausalLMOutputWithPast = self.backbone(
|
| 627 |
+
hidden_states=encoder_connector_output,
|
| 628 |
+
position_ids=word_position_ids,
|
| 629 |
+
past_key_values=backbone_past_key_values,
|
| 630 |
+
use_cache=use_cache,
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
predictive_word_embeddings = self.decoder_connector.forward(backbone_activations=backbone_output.hidden_states)
|
| 634 |
+
|
| 635 |
+
decoder_output = self.decoder.forward(
|
| 636 |
+
activations=byte_level_activations,
|
| 637 |
+
backbone_activations=predictive_word_embeddings,
|
| 638 |
+
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
|
| 639 |
+
byte_position_ids=byte_position_ids,
|
| 640 |
+
word_position_ids=word_position_ids,
|
| 641 |
+
past_key_values=decoder_past_key_values,
|
| 642 |
+
use_cache=use_cache,
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
decoder_output = self.layer_norm(decoder_output.last_hidden_state)
|
| 646 |
+
logits = self.lm_head(decoder_output)
|
| 647 |
+
|
| 648 |
+
loss = None
|
| 649 |
+
|
| 650 |
+
return CausalLMOutputWithPast(
|
| 651 |
+
loss=loss,
|
| 652 |
+
logits=logits,
|
| 653 |
+
past_key_values=past_key_values if use_cache else None,
|
| 654 |
+
hidden_states=backbone_output.hidden_states,
|
| 655 |
+
attentions=None,
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
def _append_byte(self, words: list[list[int]], token: int) -> list[list[int]]:
|
| 659 |
+
extended_last_word = words.pop() + [token]
|
| 660 |
+
try:
|
| 661 |
+
text = self.splitter.decode(extended_last_word, skip_special_tokens=False)
|
| 662 |
+
list_of_bytes = self.splitter.encode(text)
|
| 663 |
+
words.extend([list(word_in_bytes) for word_in_bytes in list_of_bytes])
|
| 664 |
+
except UnicodeDecodeError:
|
| 665 |
+
# if decoding fails, the token cannot be part of a new word since it is not a valid
|
| 666 |
+
# utf-8 end byte and we append it to the current word
|
| 667 |
+
words.append(extended_last_word)
|
| 668 |
+
return words
|
| 669 |
+
|
| 670 |
+
def _complete_word(
|
| 671 |
+
self,
|
| 672 |
+
input_ids: torch.Tensor,
|
| 673 |
+
byte_position_ids: torch.Tensor,
|
| 674 |
+
backbone_word_prediction: torch.Tensor,
|
| 675 |
+
word_position_id: torch.Tensor,
|
| 676 |
+
encoder_cache: DynamicCache,
|
| 677 |
+
decoder_cache: DynamicCache,
|
| 678 |
+
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
|
| 679 |
+
):
|
| 680 |
+
"""Generate byte tokens until we hit the first byte of a new word."""
|
| 681 |
+
words = [input_ids.squeeze(0).tolist()]
|
| 682 |
+
byte_encoder_activations = []
|
| 683 |
+
completion_logits = []
|
| 684 |
+
|
| 685 |
+
while True:
|
| 686 |
+
encoder_output = self.encoder.forward(
|
| 687 |
+
input_ids,
|
| 688 |
+
byte_position_ids=None,
|
| 689 |
+
word_position_ids=word_position_id,
|
| 690 |
+
past_key_values=encoder_cache,
|
| 691 |
+
use_cache=True,
|
| 692 |
+
)
|
| 693 |
+
byte_encoder_activations.append(encoder_output.hidden_states)
|
| 694 |
+
decoder_output = self.decoder.forward(
|
| 695 |
+
backbone_word_prediction,
|
| 696 |
+
encoder_output.hidden_states,
|
| 697 |
+
byte_position_ids=None,
|
| 698 |
+
word_position_ids=word_position_id,
|
| 699 |
+
past_key_values=decoder_cache,
|
| 700 |
+
use_cache=True,
|
| 701 |
+
)
|
| 702 |
+
decoder_output = self.layer_norm(decoder_output.last_hidden_state)
|
| 703 |
+
logits = self.lm_head(decoder_output)
|
| 704 |
+
completion_logits.append(logits[0, -1:, :])
|
| 705 |
+
next_byte = int(sample_fn(logits).item())
|
| 706 |
+
words = self._append_byte(words, next_byte)
|
| 707 |
+
if len(words) > 1 or next_byte == self.eos_token_id:
|
| 708 |
+
break
|
| 709 |
+
input_ids = torch.tensor([[next_byte]], dtype=input_ids.dtype, device=input_ids.device)
|
| 710 |
+
|
| 711 |
+
byte_encoder_activations = torch.cat(byte_encoder_activations, dim=1)
|
| 712 |
+
num_kv = encoder_cache.get_seq_length()
|
| 713 |
+
byte_position_ids = torch.arange(num_kv + 1 - byte_encoder_activations.shape[1], num_kv + 1, device=input_ids.device, dtype=torch.long).unsqueeze(0)
|
| 714 |
+
completed_word_embedding = self.encoder_connector.forward(
|
| 715 |
+
byte_encoder_activations,
|
| 716 |
+
cumulative_seq_lengths_per_word=torch.tensor([0, byte_encoder_activations.size(1)], dtype=torch.int32, device=input_ids.device),
|
| 717 |
+
word_position_ids=word_position_id,
|
| 718 |
+
byte_position_ids=byte_position_ids,
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
completion = sum(words, [])[-len(completion_logits) :]
|
| 722 |
+
first_byte_of_next_word = words[1]
|
| 723 |
+
return completion, completed_word_embedding, first_byte_of_next_word, byte_position_ids[:, -1].item() + 1, completion_logits
|
| 724 |
+
|
| 725 |
+
def generate(
|
| 726 |
+
self,
|
| 727 |
+
input_ids: torch.Tensor,
|
| 728 |
+
max_new_tokens: int,
|
| 729 |
+
cumulative_seq_lengths_per_word: torch.Tensor,
|
| 730 |
+
byte_position_ids: torch.Tensor | None = None,
|
| 731 |
+
word_position_ids: torch.Tensor | None = None,
|
| 732 |
+
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
|
| 733 |
+
use_cache: bool = True,
|
| 734 |
+
stop_sequences: Sequence[str] | None = None,
|
| 735 |
+
):
|
| 736 |
+
if use_cache:
|
| 737 |
+
completion_text, completion_logits = self._generate_cached(input_ids, max_new_tokens, cumulative_seq_lengths_per_word, byte_position_ids, word_position_ids, sample_fn, stop_sequences=stop_sequences)
|
| 738 |
+
else:
|
| 739 |
+
completion_text, completion_logits = self._generate_uncached(input_ids, max_new_tokens, cumulative_seq_lengths_per_word, byte_position_ids, word_position_ids, sample_fn, stop_sequences=stop_sequences)
|
| 740 |
+
|
| 741 |
+
# remove stop sequence if exists
|
| 742 |
+
if stop_sequences is not None:
|
| 743 |
+
stop_sequences = sorted(stop_sequences, key=lambda i: len(i), reverse=True)
|
| 744 |
+
for stop_sequence in stop_sequences:
|
| 745 |
+
if stop_sequence in completion_text:
|
| 746 |
+
completion_text_left = completion_text.split(stop_sequence)[0]
|
| 747 |
+
completion_text_removed = completion_text[len(completion_text_left) :]
|
| 748 |
+
|
| 749 |
+
completion_logits = completion_logits[: -len(list(bytes(completion_text_removed.encode("UTF-8"))))]
|
| 750 |
+
completion_text = completion_text_left
|
| 751 |
+
break
|
| 752 |
+
|
| 753 |
+
return ModelOutput(
|
| 754 |
+
completion_text=completion_text,
|
| 755 |
+
input_ids=input_ids,
|
| 756 |
+
completion_logits=completion_logits,
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
@torch.no_grad()
|
| 760 |
+
def _generate_cached(
|
| 761 |
+
self,
|
| 762 |
+
input_ids: torch.Tensor,
|
| 763 |
+
max_new_tokens: int,
|
| 764 |
+
cumulative_seq_lengths_per_word: torch.Tensor,
|
| 765 |
+
byte_position_ids: torch.Tensor | None = None,
|
| 766 |
+
word_position_ids: torch.Tensor | None = None,
|
| 767 |
+
sample_fn: Callable[[torch.Tensor], torch.Tensor] = sample_argmax,
|
| 768 |
+
stop_sequences: Sequence[str] | None = None,
|
| 769 |
+
):
|
| 770 |
+
max_total_bytes = max_new_tokens + input_ids.shape[1]
|
| 771 |
+
if byte_position_ids is None:
|
| 772 |
+
byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
| 773 |
+
|
| 774 |
+
if word_position_ids is None:
|
| 775 |
+
word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
| 776 |
+
|
| 777 |
+
last_word_start, last_word_end = (
|
| 778 |
+
cumulative_seq_lengths_per_word[-2],
|
| 779 |
+
cumulative_seq_lengths_per_word[-1],
|
| 780 |
+
)
|
| 781 |
+
# Populate cache with everything except last word
|
| 782 |
+
initial_forward_output = self.forward(
|
| 783 |
+
input_ids=input_ids[:, :last_word_start],
|
| 784 |
+
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word[:-1],
|
| 785 |
+
byte_position_ids=byte_position_ids[:, :last_word_start],
|
| 786 |
+
word_position_ids=word_position_ids[:, :-1],
|
| 787 |
+
past_key_values=None,
|
| 788 |
+
use_cache=True,
|
| 789 |
+
)
|
| 790 |
+
|
| 791 |
+
completion_bytes = []
|
| 792 |
+
completion_logits = []
|
| 793 |
+
input_ids = input_ids[:, last_word_start:last_word_end]
|
| 794 |
+
next_byte_id = last_word_end
|
| 795 |
+
byte_position_ids = byte_position_ids[:, last_word_start:last_word_end]
|
| 796 |
+
word_position_id = word_position_ids[:, -1].unsqueeze(-1)
|
| 797 |
+
backbone_last_hidden_state = initial_forward_output.hidden_states[:, -1:, :]
|
| 798 |
+
while next_byte_id < max_total_bytes:
|
| 799 |
+
completion, completed_word_embedding, first_byte_of_next_word, next_byte_id, next_completion_logits = self._complete_word(
|
| 800 |
+
input_ids=input_ids,
|
| 801 |
+
byte_position_ids=byte_position_ids,
|
| 802 |
+
backbone_word_prediction=backbone_last_hidden_state,
|
| 803 |
+
word_position_id=word_position_id,
|
| 804 |
+
encoder_cache=initial_forward_output.past_key_values.get_encoder_cache(),
|
| 805 |
+
decoder_cache=initial_forward_output.past_key_values.get_decoder_cache(),
|
| 806 |
+
sample_fn=sample_fn,
|
| 807 |
+
)
|
| 808 |
+
completion_logits.extend(next_completion_logits)
|
| 809 |
+
completion_bytes.extend(completion)
|
| 810 |
+
|
| 811 |
+
if self.eos_token_id in completion_bytes:
|
| 812 |
+
completion_bytes = completion_bytes[: completion_bytes.index(self.eos_token_id)]
|
| 813 |
+
break
|
| 814 |
+
|
| 815 |
+
if stop_sequences is not None:
|
| 816 |
+
try:
|
| 817 |
+
completion_text_tmp = self.splitter.decode(completion_bytes)
|
| 818 |
+
if any(stop_sequence in completion_text_tmp for stop_sequence in stop_sequences):
|
| 819 |
+
break
|
| 820 |
+
except Exception as e:
|
| 821 |
+
print("Cannot compare stop sequence", e)
|
| 822 |
+
|
| 823 |
+
backbone_output = self.backbone.forward(
|
| 824 |
+
hidden_states=completed_word_embedding,
|
| 825 |
+
position_ids=None,
|
| 826 |
+
past_key_values=initial_forward_output.past_key_values.get_backbone_cache(),
|
| 827 |
+
use_cache=True,
|
| 828 |
+
)
|
| 829 |
+
backbone_last_hidden_state = backbone_output.hidden_states[:, -1, :].unsqueeze(1)
|
| 830 |
+
|
| 831 |
+
input_ids = torch.tensor([first_byte_of_next_word], dtype=input_ids.dtype, device=input_ids.device)
|
| 832 |
+
byte_position_ids = torch.tensor([[next_byte_id]], dtype=input_ids.dtype, device=input_ids.device)
|
| 833 |
+
word_position_id = word_position_id + 1
|
| 834 |
+
|
| 835 |
+
completion_bytes.extend(first_byte_of_next_word)
|
| 836 |
+
completion_bytes = completion_bytes[:max_new_tokens]
|
| 837 |
+
completion_logits = torch.cat(completion_logits[:max_new_tokens], dim=0)
|
| 838 |
+
completion_text = self.splitter.decode(completion_bytes)
|
| 839 |
+
|
| 840 |
+
return completion_text, completion_logits
|
| 841 |
+
|
| 842 |
+
@torch.no_grad()
|
| 843 |
+
def _generate_uncached(
|
| 844 |
+
self,
|
| 845 |
+
input_ids: torch.Tensor,
|
| 846 |
+
max_new_tokens: int,
|
| 847 |
+
cumulative_seq_lengths_per_word: torch.Tensor,
|
| 848 |
+
byte_position_ids: torch.Tensor | None = None,
|
| 849 |
+
word_position_ids: torch.Tensor | None = None,
|
| 850 |
+
sample_fn=sample_argmax,
|
| 851 |
+
stop_sequences: Sequence[str] | None = None,
|
| 852 |
+
):
|
| 853 |
+
if byte_position_ids is None:
|
| 854 |
+
byte_position_ids = torch.arange(0, cumulative_seq_lengths_per_word[-1].item(), device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
| 855 |
+
|
| 856 |
+
if word_position_ids is None:
|
| 857 |
+
word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
| 858 |
+
|
| 859 |
+
word_list = []
|
| 860 |
+
for i in range(1, cumulative_seq_lengths_per_word.shape[0]):
|
| 861 |
+
start_idx = cumulative_seq_lengths_per_word[i - 1]
|
| 862 |
+
end_idx = cumulative_seq_lengths_per_word[i]
|
| 863 |
+
word_list.append(input_ids[:, start_idx:end_idx].squeeze(0).tolist())
|
| 864 |
+
|
| 865 |
+
completion_bytes = []
|
| 866 |
+
for _ in range(max_new_tokens):
|
| 867 |
+
output = self.forward(
|
| 868 |
+
input_ids=input_ids,
|
| 869 |
+
cumulative_seq_lengths_per_word=cumulative_seq_lengths_per_word,
|
| 870 |
+
byte_position_ids=byte_position_ids,
|
| 871 |
+
word_position_ids=word_position_ids,
|
| 872 |
+
past_key_values=None,
|
| 873 |
+
)
|
| 874 |
+
|
| 875 |
+
next_byte = int(sample_fn(output.logits).item())
|
| 876 |
+
completion_bytes.append(next_byte)
|
| 877 |
+
if next_byte == self.eos_token_id:
|
| 878 |
+
break
|
| 879 |
+
word_list = self._append_byte(word_list, next_byte)
|
| 880 |
+
|
| 881 |
+
input_ids = torch.tensor(sum(word_list, []), dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
| 882 |
+
cumulative_seq_lengths_per_word = torch.tensor([0] + list(itertools.accumulate(len(word) for word in word_list if len(word) > 0)), dtype=torch.int32, device=input_ids.device)
|
| 883 |
+
byte_position_ids = torch.arange(0, input_ids.shape[1], device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
| 884 |
+
word_position_ids = torch.arange(0, cumulative_seq_lengths_per_word.shape[0] - 1, device=input_ids.device, dtype=torch.int32).unsqueeze(0)
|
| 885 |
+
|
| 886 |
+
if stop_sequences is not None:
|
| 887 |
+
try:
|
| 888 |
+
completion_text_tmp = self.splitter.decode(completion_bytes)
|
| 889 |
+
if any(completion_text_tmp.endswith(stop_sequence) for stop_sequence in stop_sequences):
|
| 890 |
+
break
|
| 891 |
+
except Exception as e:
|
| 892 |
+
print("Cannot compare stop sequence", e)
|
| 893 |
+
|
| 894 |
+
completion_text = self.splitter.decode(completion_bytes)
|
| 895 |
+
completion_logits = output.logits[0, -len(completion_bytes) :, :]
|
| 896 |
+
|
| 897 |
+
return completion_text, completion_logits
|
| 898 |
+
|
| 899 |
+
def _prepare_input(self, input_str: str, add_llama_template: bool = True, device: torch.device | None = None) -> tuple[torch.Tensor, torch.Tensor]:
|
| 900 |
+
if add_llama_template:
|
| 901 |
+
input_str = LLAMA_TEMPLATE.format(input=input_str)
|
| 902 |
+
|
| 903 |
+
if device is None:
|
| 904 |
+
assert torch.cuda.is_available(), "CUDA is not available"
|
| 905 |
+
device = torch.device("cuda")
|
| 906 |
+
input_ids_list = []
|
| 907 |
+
cumulative_per_word_lengths_list = [0]
|
| 908 |
+
|
| 909 |
+
words = self.splitter.encode(input_str)
|
| 910 |
+
for word in words:
|
| 911 |
+
input_ids_list.extend(word)
|
| 912 |
+
word_length = len(word)
|
| 913 |
+
cumulative_per_word_lengths_list.append(cumulative_per_word_lengths_list[-1] + word_length)
|
| 914 |
+
input_ids = torch.tensor(input_ids_list, device=device, dtype=torch.int32).unsqueeze(0)
|
| 915 |
+
cumulative_per_word_lengths = torch.tensor(cumulative_per_word_lengths_list, device=device, dtype=torch.int32)
|
| 916 |
+
return input_ids, cumulative_per_word_lengths
|
splitter.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from hat_splitter import HATSplitter as RustHATSplitter
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class HATSplitter:
|
| 6 |
+
def __init__(self, special_token_dict: dict | None = None, max_word_size: int = 128):
|
| 7 |
+
self.hat_splitter = RustHATSplitter()
|
| 8 |
+
self.max_word_size = max_word_size
|
| 9 |
+
self.special_token_dict = special_token_dict
|
| 10 |
+
self.special_token_replace: dict[int, list[int]] = {
|
| 11 |
+
token: list(text.encode("utf-8")) for text, token in self.special_token_dict.items()
|
| 12 |
+
}
|
| 13 |
+
self.special_token_pattern = (
|
| 14 |
+
re.compile(rf"({'|'.join(map(re.escape, special_token_dict.keys()))})")
|
| 15 |
+
if special_token_dict
|
| 16 |
+
else re.compile(r"(?!)")
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def encode(self, text: str) -> list[list[int]]:
|
| 21 |
+
chunks = []
|
| 22 |
+
for str_chunk in self.special_token_pattern.split(text):
|
| 23 |
+
if str_chunk:
|
| 24 |
+
if str_chunk in self.special_token_dict:
|
| 25 |
+
chunks.append([self.special_token_dict[str_chunk]])
|
| 26 |
+
else:
|
| 27 |
+
chunks.extend(list(chunk) for chunk in self.hat_splitter.split_with_limit(str_chunk, self.max_word_size))
|
| 28 |
+
return chunks
|
| 29 |
+
|
| 30 |
+
def decode(self, token_ids: list[int], errors: str = "replace", skip_special_tokens: bool = False) -> str:
|
| 31 |
+
assert isinstance(token_ids, list), "token_ids must be a list"
|
| 32 |
+
assert all(isinstance(token_id, int) for token_id in token_ids), "token_ids must be a list of integers"
|
| 33 |
+
|
| 34 |
+
new_token_ids: list[int]
|
| 35 |
+
if skip_special_tokens:
|
| 36 |
+
new_token_ids = [token_id for token_id in token_ids if token_id not in self.special_token_replace]
|
| 37 |
+
else:
|
| 38 |
+
new_token_ids = []
|
| 39 |
+
for token in token_ids:
|
| 40 |
+
if token in self.special_token_replace:
|
| 41 |
+
new_token_ids.extend(self.special_token_replace[token])
|
| 42 |
+
else:
|
| 43 |
+
new_token_ids.append(token)
|
| 44 |
+
|
| 45 |
+
return bytes(new_token_ids).decode("utf-8", errors=errors)
|