SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Ahmednogood/legal-ft-fa861294-da94-4f80-8f7f-e97b47c99faf")
# Run inference
sentences = [
"How does the author describe Apple's current LLM features compared to frontier LLM capabilities?",
'Now that those features are rolling out they’re pretty weak. As an LLM power-user I know what these models are capable of, and Apple’s LLM features offer a pale imitation of what a frontier LLM can do. Instead we’re getting notification summaries that misrepresent news headlines and writing assistant tools that I’ve not found useful at all. Genmoji are kind of fun though.\nThe rise of inference-scaling “reasoning” models\nThe most interesting development in the final quarter of 2024 was the introduction of a new shape of LLM, exemplified by OpenAI’s o1 models—initially released as o1-preview and o1-mini on September 12th.',
'Those US export regulations on GPUs to China seem to have inspired some very effective training optimizations!\nThe environmental impact got better\nA welcome result of the increased efficiency of the models—both the hosted ones and the ones I can run locally—is that the energy usage and environmental impact of running a prompt has dropped enormously over the past couple of years.\nOpenAI themselves are charging 100x less for a prompt compared to the GPT-3 days. I have it on good authority that neither Google Gemini nor Amazon Nova (two of the least expensive model providers) are running prompts at a loss.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.9167 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9167 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9167 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9692 |
| cosine_mrr@10 | 0.9583 |
| cosine_map@100 | 0.9583 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 156 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 156 samples:
sentence_0 sentence_1 type string string details - min: 12 tokens
- mean: 21.01 tokens
- max: 33 tokens
- min: 43 tokens
- mean: 135.32 tokens
- max: 214 tokens
- Samples:
sentence_0 sentence_1 What factors contributed to the crash in LLM prices according to the context?The GPT-4 barrier was comprehensively broken
Some of those GPT-4 models run on my laptop
LLM prices crashed, thanks to competition and increased efficiency
Multimodal vision is common, audio and video are starting to emerge
Voice and live camera mode are science fiction come to life
Prompt driven app generation is a commodity already
Universal access to the best models lasted for just a few short months
“Agents” still haven’t really happened yet
Evals really matter
Apple Intelligence is bad, Apple’s MLX library is excellent
The rise of inference-scaling “reasoning” models
Was the best currently available LLM trained in China for less than $6m?
The environmental impact got better
The environmental impact got much, much worseHow has the availability and capability of multimodal vision and audio/video features evolved?The GPT-4 barrier was comprehensively broken
Some of those GPT-4 models run on my laptop
LLM prices crashed, thanks to competition and increased efficiency
Multimodal vision is common, audio and video are starting to emerge
Voice and live camera mode are science fiction come to life
Prompt driven app generation is a commodity already
Universal access to the best models lasted for just a few short months
“Agents” still haven’t really happened yet
Evals really matter
Apple Intelligence is bad, Apple’s MLX library is excellent
The rise of inference-scaling “reasoning” models
Was the best currently available LLM trained in China for less than $6m?
The environmental impact got better
The environmental impact got much, much worseWhat challenge must be overcome to build the prompt-driven custom interface feature mentioned in the context?This prompt-driven custom interface feature is so powerful and easy to build (once you’ve figured out the gnarly details of browser sandboxing) that I expect it to show up as a feature in a wide range of products in 2025.
Universal access to the best models lasted for just a few short months
For a few short months this year all three of the best available models—GPT-4o, Claude 3.5 Sonnet and Gemini 1.5 Pro—were freely available to most of the world. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 10per_device_eval_batch_size: 10num_train_epochs: 10multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 10per_device_eval_batch_size: 10per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | cosine_ndcg@10 |
|---|---|---|
| 1.0 | 16 | 0.9484 |
| 2.0 | 32 | 0.9484 |
| 3.0 | 48 | 0.9692 |
| 3.125 | 50 | 0.9692 |
| 4.0 | 64 | 0.9692 |
| 5.0 | 80 | 0.9638 |
| 6.0 | 96 | 0.9692 |
| 6.25 | 100 | 0.9692 |
| 7.0 | 112 | 0.9692 |
| 8.0 | 128 | 0.9692 |
| 9.0 | 144 | 0.9692 |
| 9.375 | 150 | 0.9692 |
| 10.0 | 160 | 0.9692 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Model tree for Ahmednogood/legal-ft-fa861294-da94-4f80-8f7f-e97b47c99faf
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.917
- Cosine Accuracy@3 on Unknownself-reported1.000
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.917
- Cosine Precision@3 on Unknownself-reported0.333
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.917
- Cosine Recall@3 on Unknownself-reported1.000