Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- en
|
|
|
|
| 4 |
license: apache-2.0
|
| 5 |
tags:
|
| 6 |
- text-generation-inference
|
|
@@ -9,8 +10,51 @@ tags:
|
|
| 9 |
- llama
|
| 10 |
- trl
|
| 11 |
base_model: unsloth/llama-3-8b-bnb-4bit
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Uploaded model
|
| 15 |
|
| 16 |
- **Developed by:** AhmedBou
|
|
@@ -19,4 +63,4 @@ base_model: unsloth/llama-3-8b-bnb-4bit
|
|
| 19 |
|
| 20 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 21 |
|
| 22 |
-
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
+
- ar
|
| 5 |
license: apache-2.0
|
| 6 |
tags:
|
| 7 |
- text-generation-inference
|
|
|
|
| 10 |
- llama
|
| 11 |
- trl
|
| 12 |
base_model: unsloth/llama-3-8b-bnb-4bit
|
| 13 |
+
datasets:
|
| 14 |
+
- AhmedBou/EngText-ArabicSummary
|
| 15 |
---
|
| 16 |
|
| 17 |
+
## Inference code:
|
| 18 |
+
Use this python code for inference
|
| 19 |
+
|
| 20 |
+
````python
|
| 21 |
+
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
|
| 22 |
+
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
| 23 |
+
!pip install --no-deps xformers trl peft accelerate bitsandbytes
|
| 24 |
+
|
| 25 |
+
from unsloth import FastLanguageModel
|
| 26 |
+
|
| 27 |
+
max_seq_length = 2048
|
| 28 |
+
dtype = None
|
| 29 |
+
load_in_4bit = True
|
| 30 |
+
|
| 31 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 32 |
+
model_name = "AhmedBou/Llama-3-EngText-ArabicSummary",
|
| 33 |
+
max_seq_length = max_seq_length,
|
| 34 |
+
dtype = dtype,
|
| 35 |
+
load_in_4bit = load_in_4bit,
|
| 36 |
+
)
|
| 37 |
+
FastLanguageModel.for_inference(model)
|
| 38 |
+
|
| 39 |
+
input = """
|
| 40 |
+
past a news article here
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
| 44 |
+
inputs = tokenizer(
|
| 45 |
+
[
|
| 46 |
+
alpaca_prompt.format(
|
| 47 |
+
input, # input
|
| 48 |
+
"", # output - leave this blank for generation!
|
| 49 |
+
)
|
| 50 |
+
], return_tensors = "pt").to("cuda")
|
| 51 |
+
|
| 52 |
+
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
|
| 53 |
+
tokenizer.batch_decode(outputs)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
````
|
| 57 |
+
|
| 58 |
# Uploaded model
|
| 59 |
|
| 60 |
- **Developed by:** AhmedBou
|
|
|
|
| 63 |
|
| 64 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 65 |
|
| 66 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|