Upload EuroSAT classifier
Browse files- .gitattributes +6 -0
- README.md +99 -0
- config.json +35 -0
- confusion_matrix_detailed.png +3 -0
- confusion_matrix_epoch_1.png +3 -0
- confusion_matrix_epoch_6.png +3 -0
- evaluation_results.json +150 -0
- per_class_performance.png +3 -0
- probability_distribution.png +3 -0
- pytorch_model.bin +3 -0
- training_args.json +8 -0
- training_history.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
confusion_matrix_detailed.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
confusion_matrix_epoch_1.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
confusion_matrix_epoch_6.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
per_class_performance.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
probability_distribution.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
training_history.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: microsoft/swin-base-patch4-window7-224
|
| 4 |
+
tags:
|
| 5 |
+
- image-classification
|
| 6 |
+
- satellite-imagery
|
| 7 |
+
- eurosat
|
| 8 |
+
- remote-sensing
|
| 9 |
+
- transformer
|
| 10 |
+
datasets:
|
| 11 |
+
- nielsr/eurosat-demo
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
- f1
|
| 15 |
+
library_name: transformers
|
| 16 |
+
pipeline_tag: image-classification
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# EuroSAT Satellite Image Classifier
|
| 20 |
+
|
| 21 |
+
This model is a fine-tuned version of `microsoft/swin-base-patch4-window7-224` for satellite image classification on the EuroSAT-SAR dataset.
|
| 22 |
+
|
| 23 |
+
## Model Details
|
| 24 |
+
|
| 25 |
+
- **Base Model**: microsoft/swin-base-patch4-window7-224
|
| 26 |
+
- **Dataset**: EuroSAT-SAR (Synthetic Aperture Radar satellite images)
|
| 27 |
+
- **Task**: Multi-class image classification
|
| 28 |
+
- **Number of Classes**: 10
|
| 29 |
+
- **Image Size**: 224x224
|
| 30 |
+
|
| 31 |
+
## Classes
|
| 32 |
+
|
| 33 |
+
The model can classify satellite images into the following 10 categories:
|
| 34 |
+
|
| 35 |
+
- 0: AnnualCrop
|
| 36 |
+
- 1: Forest
|
| 37 |
+
- 2: HerbaceousVegetation
|
| 38 |
+
- 3: Highway
|
| 39 |
+
- 4: Industrial
|
| 40 |
+
- 5: Pasture
|
| 41 |
+
- 6: PermanentCrop
|
| 42 |
+
- 7: Residential
|
| 43 |
+
- 8: River
|
| 44 |
+
- 9: SeaLake
|
| 45 |
+
|
| 46 |
+
## Training Details
|
| 47 |
+
|
| 48 |
+
- **Learning Rate**: 5e-05
|
| 49 |
+
- **Batch Size**: 32
|
| 50 |
+
- **Number of Epochs**: 10
|
| 51 |
+
- **Optimizer**: AdamW
|
| 52 |
+
- **Weight Decay**: 0.01
|
| 53 |
+
- **Warmup Steps**: 500
|
| 54 |
+
|
| 55 |
+
## Usage
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
from transformers import AutoImageProcessor, AutoModel
|
| 59 |
+
from PIL import Image
|
| 60 |
+
import torch
|
| 61 |
+
|
| 62 |
+
# Load the model and processor
|
| 63 |
+
processor = AutoImageProcessor.from_pretrained("Adilbai/eurosat-swin-transformer")
|
| 64 |
+
model = AutoModel.from_pretrained("Adilbai/eurosat-swin-transformer")
|
| 65 |
+
|
| 66 |
+
# Load and preprocess an image
|
| 67 |
+
image = Image.open("path_to_your_satellite_image.jpg")
|
| 68 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 69 |
+
|
| 70 |
+
# Make prediction
|
| 71 |
+
with torch.no_grad():
|
| 72 |
+
outputs = model(**inputs)
|
| 73 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 74 |
+
predicted_class = predictions.argmax().item()
|
| 75 |
+
|
| 76 |
+
print(f"Predicted class: {predicted_class}")
|
| 77 |
+
Dataset
|
| 78 |
+
This model was trained on the EuroSAT-SAR dataset, which contains Synthetic Aperture Radar (SAR) satellite images from the Sentinel-1 satellite. The dataset includes land use and land cover classification of European landscapes.
|
| 79 |
+
|
| 80 |
+
Performance
|
| 81 |
+
The model achieves competitive performance on the EuroSAT-SAR test set. Detailed evaluation metrics can be found in the training logs.
|
| 82 |
+
|
| 83 |
+
Training Infrastructure
|
| 84 |
+
Framework: PyTorch with Transformers
|
| 85 |
+
Hardware: CUDA-compatible GPU
|
| 86 |
+
Mixed Precision: Enabled for efficient training
|
| 87 |
+
Monitoring: TensorBoard for training visualization
|
| 88 |
+
Citation
|
| 89 |
+
If you use this model, please cite:
|
| 90 |
+
|
| 91 |
+
BibTeX
|
| 92 |
+
@article{eurosat,
|
| 93 |
+
title={EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification},
|
| 94 |
+
author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian},
|
| 95 |
+
journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
|
| 96 |
+
year={2019}
|
| 97 |
+
}
|
| 98 |
+
License
|
| 99 |
+
This model is released under the Apache 2.0 License.
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"EuroSATTransformerClassifier"
|
| 4 |
+
],
|
| 5 |
+
"model_type": "eurosat-transformer",
|
| 6 |
+
"num_labels": 10,
|
| 7 |
+
"id2label": {
|
| 8 |
+
"0": "AnnualCrop",
|
| 9 |
+
"1": "Forest",
|
| 10 |
+
"2": "HerbaceousVegetation",
|
| 11 |
+
"3": "Highway",
|
| 12 |
+
"4": "Industrial",
|
| 13 |
+
"5": "Pasture",
|
| 14 |
+
"6": "PermanentCrop",
|
| 15 |
+
"7": "Residential",
|
| 16 |
+
"8": "River",
|
| 17 |
+
"9": "SeaLake"
|
| 18 |
+
},
|
| 19 |
+
"label2id": {
|
| 20 |
+
"AnnualCrop": 0,
|
| 21 |
+
"Forest": 1,
|
| 22 |
+
"HerbaceousVegetation": 2,
|
| 23 |
+
"Highway": 3,
|
| 24 |
+
"Industrial": 4,
|
| 25 |
+
"Pasture": 5,
|
| 26 |
+
"PermanentCrop": 6,
|
| 27 |
+
"Residential": 7,
|
| 28 |
+
"River": 8,
|
| 29 |
+
"SeaLake": 9
|
| 30 |
+
},
|
| 31 |
+
"base_model": "microsoft/swin-base-patch4-window7-224",
|
| 32 |
+
"image_size": 224,
|
| 33 |
+
"dropout_rate": 0.1,
|
| 34 |
+
"problem_type": "single_label_classification"
|
| 35 |
+
}
|
confusion_matrix_detailed.png
ADDED
|
Git LFS Details
|
confusion_matrix_epoch_1.png
ADDED
|
Git LFS Details
|
confusion_matrix_epoch_6.png
ADDED
|
Git LFS Details
|
evaluation_results.json
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metrics": {
|
| 3 |
+
"accuracy": 0.9881481481481481,
|
| 4 |
+
"precision_weighted": 0.9882860757948263,
|
| 5 |
+
"recall_weighted": 0.9881481481481481,
|
| 6 |
+
"f1_weighted": 0.9881731188401808,
|
| 7 |
+
"precision_per_class": [
|
| 8 |
+
0.9800664451827242,
|
| 9 |
+
1.0,
|
| 10 |
+
0.9830508474576272,
|
| 11 |
+
0.9920318725099602,
|
| 12 |
+
1.0,
|
| 13 |
+
0.9898477157360406,
|
| 14 |
+
0.9498069498069498,
|
| 15 |
+
0.9966666666666667,
|
| 16 |
+
0.9920318725099602,
|
| 17 |
+
0.9966666666666667
|
| 18 |
+
],
|
| 19 |
+
"recall_per_class": [
|
| 20 |
+
0.9833333333333333,
|
| 21 |
+
0.99,
|
| 22 |
+
0.9666666666666667,
|
| 23 |
+
0.996,
|
| 24 |
+
0.996,
|
| 25 |
+
0.975,
|
| 26 |
+
0.984,
|
| 27 |
+
0.9966666666666667,
|
| 28 |
+
0.996,
|
| 29 |
+
0.9966666666666667
|
| 30 |
+
],
|
| 31 |
+
"f1_per_class": [
|
| 32 |
+
0.9816971713810315,
|
| 33 |
+
0.9949748743718593,
|
| 34 |
+
0.9747899159663865,
|
| 35 |
+
0.9940119760479043,
|
| 36 |
+
0.9979959919839679,
|
| 37 |
+
0.982367758186398,
|
| 38 |
+
0.9666011787819253,
|
| 39 |
+
0.9966666666666667,
|
| 40 |
+
0.9940119760479043,
|
| 41 |
+
0.9966666666666667
|
| 42 |
+
],
|
| 43 |
+
"support_per_class": [
|
| 44 |
+
300,
|
| 45 |
+
300,
|
| 46 |
+
300,
|
| 47 |
+
250,
|
| 48 |
+
250,
|
| 49 |
+
200,
|
| 50 |
+
250,
|
| 51 |
+
300,
|
| 52 |
+
250,
|
| 53 |
+
300
|
| 54 |
+
],
|
| 55 |
+
"classification_report": {
|
| 56 |
+
"AnnualCrop": {
|
| 57 |
+
"precision": 0.9800664451827242,
|
| 58 |
+
"recall": 0.9833333333333333,
|
| 59 |
+
"f1-score": 0.9816971713810315,
|
| 60 |
+
"support": 300
|
| 61 |
+
},
|
| 62 |
+
"Forest": {
|
| 63 |
+
"precision": 1.0,
|
| 64 |
+
"recall": 0.99,
|
| 65 |
+
"f1-score": 0.9949748743718593,
|
| 66 |
+
"support": 300
|
| 67 |
+
},
|
| 68 |
+
"HerbaceousVegetation": {
|
| 69 |
+
"precision": 0.9830508474576272,
|
| 70 |
+
"recall": 0.9666666666666667,
|
| 71 |
+
"f1-score": 0.9747899159663865,
|
| 72 |
+
"support": 300
|
| 73 |
+
},
|
| 74 |
+
"Highway": {
|
| 75 |
+
"precision": 0.9920318725099602,
|
| 76 |
+
"recall": 0.996,
|
| 77 |
+
"f1-score": 0.9940119760479043,
|
| 78 |
+
"support": 250
|
| 79 |
+
},
|
| 80 |
+
"Industrial": {
|
| 81 |
+
"precision": 1.0,
|
| 82 |
+
"recall": 0.996,
|
| 83 |
+
"f1-score": 0.9979959919839679,
|
| 84 |
+
"support": 250
|
| 85 |
+
},
|
| 86 |
+
"Pasture": {
|
| 87 |
+
"precision": 0.9898477157360406,
|
| 88 |
+
"recall": 0.975,
|
| 89 |
+
"f1-score": 0.982367758186398,
|
| 90 |
+
"support": 200
|
| 91 |
+
},
|
| 92 |
+
"PermanentCrop": {
|
| 93 |
+
"precision": 0.9498069498069498,
|
| 94 |
+
"recall": 0.984,
|
| 95 |
+
"f1-score": 0.9666011787819253,
|
| 96 |
+
"support": 250
|
| 97 |
+
},
|
| 98 |
+
"Residential": {
|
| 99 |
+
"precision": 0.9966666666666667,
|
| 100 |
+
"recall": 0.9966666666666667,
|
| 101 |
+
"f1-score": 0.9966666666666667,
|
| 102 |
+
"support": 300
|
| 103 |
+
},
|
| 104 |
+
"River": {
|
| 105 |
+
"precision": 0.9920318725099602,
|
| 106 |
+
"recall": 0.996,
|
| 107 |
+
"f1-score": 0.9940119760479043,
|
| 108 |
+
"support": 250
|
| 109 |
+
},
|
| 110 |
+
"SeaLake": {
|
| 111 |
+
"precision": 0.9966666666666667,
|
| 112 |
+
"recall": 0.9966666666666667,
|
| 113 |
+
"f1-score": 0.9966666666666667,
|
| 114 |
+
"support": 300
|
| 115 |
+
},
|
| 116 |
+
"accuracy": 0.9881481481481481,
|
| 117 |
+
"macro avg": {
|
| 118 |
+
"precision": 0.9880169036536595,
|
| 119 |
+
"recall": 0.9880333333333333,
|
| 120 |
+
"f1-score": 0.987978417610071,
|
| 121 |
+
"support": 2700
|
| 122 |
+
},
|
| 123 |
+
"weighted avg": {
|
| 124 |
+
"precision": 0.9882860757948263,
|
| 125 |
+
"recall": 0.9881481481481481,
|
| 126 |
+
"f1-score": 0.9881731188401808,
|
| 127 |
+
"support": 2700
|
| 128 |
+
}
|
| 129 |
+
}
|
| 130 |
+
},
|
| 131 |
+
"config": {
|
| 132 |
+
"model_name": "microsoft/swin-base-patch4-window7-224",
|
| 133 |
+
"num_labels": 10,
|
| 134 |
+
"batch_size": 32,
|
| 135 |
+
"learning_rate": 5e-05,
|
| 136 |
+
"num_epochs": 10
|
| 137 |
+
},
|
| 138 |
+
"label_names": [
|
| 139 |
+
"AnnualCrop",
|
| 140 |
+
"Forest",
|
| 141 |
+
"HerbaceousVegetation",
|
| 142 |
+
"Highway",
|
| 143 |
+
"Industrial",
|
| 144 |
+
"Pasture",
|
| 145 |
+
"PermanentCrop",
|
| 146 |
+
"Residential",
|
| 147 |
+
"River",
|
| 148 |
+
"SeaLake"
|
| 149 |
+
]
|
| 150 |
+
}
|
per_class_performance.png
ADDED
|
Git LFS Details
|
probability_distribution.png
ADDED
|
Git LFS Details
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33db89561cc5e5a58faf3254d4d0194627a9e280c2bcb37030f11b7936569559
|
| 3 |
+
size 350281670
|
training_args.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"learning_rate": 5e-05,
|
| 3 |
+
"num_epochs": 10,
|
| 4 |
+
"batch_size": 32,
|
| 5 |
+
"warmup_steps": 500,
|
| 6 |
+
"weight_decay": 0.01,
|
| 7 |
+
"model_name": "microsoft/swin-base-patch4-window7-224"
|
| 8 |
+
}
|
training_history.png
ADDED
|
Git LFS Details
|