File size: 9,575 Bytes
2728e84 ad22b81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
---
license: bigscience-openrail-m
datasets:
- Abdelrahma12/heart_failure_clinical_records_dataset.csv
language:
- ar
metrics:
- accuracy
base_model:
- HuggingFaceTB/SmolLM3-3B
new_version: HuggingFaceTB/SmolLM3-3B
library_name: adapter-transformers
tags:
- medical
---
###Importing Liberaries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from xgboost import XGBClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
import warnings
warnings.filterwarnings('ignore')
from google.colab import drive
### Data Load
data = pd.read_csv(r'/content/heart_failure_clinical_records_dataset - Copy.csv')
### Data Exploratory
### Data Exploratory
data
data.head()
data.info()
data.duplicated().sum()
labels = ["40-45", "46-50", "51-55", "56-60", "61-65", "66-70", "71-75", "76-80", "81-95"]
data['age_group'] = pd.cut(data['age'], bins=[40, 45, 50, 55, 60, 65, 70, 75, 80, 95], labels=labels)
data.isnull().sum()
### Data Visualization
plt.figure(figsize=(10,6))
sns.countplot(data=data, x='age_group', hue='DEATH_EVENT', palette=["lightblue", "red"])
plt.title("Death Count by Age Group")
plt.xlabel("Age Group")
plt.ylabel("Patient Count")
plt.legend(["Survived", "Died"])
plt.show()
corr_matrix = data.drop(columns=['age_group']).corr()
plt.figure(figsize=(12, 10))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix of Heart Failure Clinical Records')
plt.show()
death_counts = data['DEATH_EVENT'].value_counts()
plt.figure(figsize=(6, 6))
plt.pie(death_counts, labels=['Not Died', 'Died'], autopct='%1.1f%%', startangle=90, colors=['skyblue', 'lightcoral'])
plt.title('Distribution of DEATH_EVENT')
plt.show()
# Select a subset of numerical features that showed some correlation with DEATH_EVENT
selected_features = ['time', 'serum_creatinine', 'ejection_fraction', 'age', 'serum_sodium', 'DEATH_EVENT']
sns.pairplot(data[selected_features], hue='DEATH_EVENT', diag_kind='kde')
plt.suptitle('Pairplot of Selected Numerical Features by DEATH_EVENT', y=1.02)
plt.show()
# Data Preprocessing
### Data Split
data.drop(columns=['age_group'], inplace=True)
X = data.drop('DEATH_EVENT', axis=1)
y = data['DEATH_EVENT']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
### Feature Scaling
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
continuous_features = ['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_creatinine', 'serum_sodium', 'time']
X_train[continuous_features] = scaler.fit_transform(X_train[continuous_features])
X_test[continuous_features] = scaler.transform(X_test[continuous_features])
#Modeling
### Logistic Regression
log_params = {
'penalty': ['l1', 'l2', 'elasticnet', 'none'],
'C': [0.01, 0.1, 1, 10, 100],
'solver': ['lbfgs', 'saga'],
'max_iter': [1000]
}
log_grid = GridSearchCV(LogisticRegression(random_state=42), log_params, cv=5)
log_grid.fit(X_train, y_train)
print(" Logistic Regression Best Params:", log_grid.best_params_)
####Evaluation
log_model = LogisticRegression(
penalty='l2',
C=0.1,
solver='lbfgs',
max_iter=1000,
random_state=42
)
log_model.fit(X_train, y_train)
y_pred_log = log_model.predict(X_test)
print(" Logistic Regression")
print(f"Accuracy: {accuracy_score(y_test, y_pred_log):.4f}")
print(classification_report(y_test, y_pred_log))
### Random Forest
rf_params = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 5, 10],
'min_samples_split': [2, 5],
'min_samples_leaf': [1, 2]
}
rf_grid = GridSearchCV(RandomForestClassifier(random_state=42), rf_params, cv=5)
rf_grid.fit(X_train, y_train)
print(" Random Forest Best Params:", rf_grid.best_params_)
####Evaluation
rf_model = RandomForestClassifier(
n_estimators=50, max_depth=5,
min_samples_leaf=2, min_samples_split=5,
random_state=42
)
rf_model.fit(X_train, y_train)
y_pred_rf = rf_model.predict(X_test)
print(" Random Forest")
print(f"Accuracy: {accuracy_score(y_test, y_pred_rf):.4f}")
print(classification_report(y_test, y_pred_rf))
### SVM
svm_params = {
'kernel': ['linear', 'rbf'],
'C': [0.1, 1, 10],
'gamma': ['scale', 'auto']
}
svm_grid = GridSearchCV(SVC(probability=True, random_state=42), svm_params, cv=5)
svm_grid.fit(X_train, y_train)
print(" SVM Best Params:", svm_grid.best_params_)
#### Evaluation
svm_model = SVC(
C=0.1, gamma='scale', kernel='linear',
probability=True, random_state=42
)
svm_model.fit(X_train, y_train)
y_pred_svm = svm_model.predict(X_test)
print("\n SVM")
print(f"Accuracy: {accuracy_score(y_test, y_pred_svm):.4f}")
print(classification_report(y_test, y_pred_svm))
### MLP
mlp_params = {
'hidden_layer_sizes': [(64,), (64, 32), (128, 64)],
'activation': ['relu', 'tanh'],
'alpha': [0.0001, 0.001],
'learning_rate': ['constant', 'adaptive']
}
mlp_grid = GridSearchCV(MLPClassifier(max_iter=1000, random_state=42), mlp_params, cv=5)
mlp_grid.fit(X_train, y_train)
print(" MLP Best Params:", mlp_grid.best_params_)
#### Evaluation
mlp_model = MLPClassifier(
hidden_layer_sizes=(64, 32),
activation='tanh',
alpha=0.0001,
learning_rate='constant',
max_iter=1000,
random_state=42
)
mlp_model.fit(X_train, y_train)
y_pred_mlp = mlp_model.predict(X_test)
print("\n MLP Neural Network")
print(f"Accuracy: {accuracy_score(y_test, y_pred_mlp):.4f}")
print(classification_report(y_test, y_pred_mlp))
### XGBoost
xgb_params = {
'n_estimators': [50, 100, 200],
'max_depth': [3, 4, 5],
'learning_rate': [0.01, 0.1, 0.2]
}
xgb_grid = GridSearchCV(
XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42),
xgb_params, cv=5
)
xgb_grid.fit(X_train, y_train)
print(" XGBoost Best Params:", xgb_grid.best_params_)
#### Evaluation
xgb_model = XGBClassifier(
n_estimators=50,
max_depth=4,
learning_rate=0.2,
use_label_encoder=False,
eval_metric='logloss',
random_state=42
)
xgb_model.fit(X_train, y_train)
y_pred_xgb = xgb_model.predict(X_test)
print("\n XGBoost")
print(f"Accuracy: {accuracy_score(y_test, y_pred_xgb):.4f}")
print(classification_report(y_test, y_pred_xgb))
### KNN
knn_params = {
'n_neighbors': [3, 5, 7, 9],
'weights': ['uniform', 'distance'],
'metric': ['euclidean', 'manhattan']
}
knn_grid = GridSearchCV(KNeighborsClassifier(), knn_params, cv=5)
knn_grid.fit(X_train, y_train)
print(" KNN Best Params:", knn_grid.best_params_)
#### Evaluation
knn_model = KNeighborsClassifier(
n_neighbors=5,
weights='uniform',
metric='euclidean'
)
knn_model.fit(X_train, y_train)
y_pred_knn = knn_model.predict(X_test)
print("\n KNN")
print(f"Accuracy: {accuracy_score(y_test, y_pred_knn):.4f}")
print(classification_report(y_test, y_pred_knn))
### Models Accuracies
models = [
'Random Forest', 'SVM', 'MLP',
'XGBoost', 'KNN', 'Logistic Regression'
]
accuracies = [
0.85, 0.8333, 0.6833,
0.8333, 0.7167, 0.8333
]
plt.figure(figsize=(10, 6))
plt.bar(models, accuracies, color=['blue', 'green', 'purple', 'orange', 'red', 'cyan'])
plt.ylim(0, 1)
plt.ylabel('Accuracy')
plt.title('Model Accuracy Comparison')
plt.xticks(rotation=30)
plt.show()
import gradio as gr
from sklearn.preprocessing import StandardScaler
import joblib
joblib.dump(rf_model, "heart_model.pkl")
joblib.dump(scaler, "scaler.pkl")
print("Model and scaler saved successfully")
model = joblib.load("heart_model.pkl")
scaler = joblib.load("scaler.pkl")
def predict_heart_risk(age, cpk, ef, platelets, sc, ss, time, anaemia, diabetes, high_bp, sex, smoking):
data = pd.DataFrame([[
age, anaemia, cpk, diabetes, ef, high_bp,
platelets, sc, ss, sex, smoking, time
]], columns=[
'age', 'anaemia', 'creatinine_phosphokinase', 'diabetes',
'ejection_fraction', 'high_blood_pressure', 'platelets',
'serum_creatinine', 'serum_sodium', 'sex', 'smoking', 'time'
])
continuous_features = ['age', 'creatinine_phosphokinase', 'ejection_fraction','platelets', 'serum_creatinine', 'serum_sodium', 'time']
data[continuous_features] = scaler.transform(data[continuous_features])
prediction = model.predict(data)[0]
return " At Risk" if prediction == 1 else " Not At Risk"
inputs = [
gr.Number(label="Age"),
gr.Number(label="Creatinine Phosphokinase, Range [0,100000]"),
gr.Number(label="Ejection Fraction, Range [5,85] "),
gr.Number(label="Platelets, Range [5000,2000000]"),
gr.Number(label="Serum Creatinine, Range [0.1,60]"),
gr.Number(label="Serum Sodium, Range [95,255]"),
gr.Number(label="Follow-up Time (days)"),
gr.Radio([0, 1], label="Anaemia (0=No, 1=Yes)"),
gr.Radio([0, 1], label="Diabetes (0=No, 1=Yes)"),
gr.Radio([0, 1], label="High Blood Pressure (0=No, 1=Yes)"),
gr.Radio([0, 1], label="Sex (0=Female, 1=Male)"),
gr.Radio([0, 1], label="Smoking (0=No, 1=Yes)")
]
gr.Interface(
fn=predict_heart_risk,
inputs=inputs,
outputs="text",
title=" Heart Failure Risk Predictor",
description="Enter patient data to predict if they are at risk of heart failure.",
allow_flagging="never"
).launch()
|