Yura Kuratov
commited on
Commit
·
a34e087
1
Parent(s):
744001c
upload GENA-LM Fly model
Browse files- README.md +86 -0
- config.json +27 -0
- events.out.tfevents +3 -0
- modeling_bert.py +2208 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- dna
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# GENA-LM Fly 🪰 (gena-lm-bert-base-fly)
|
| 7 |
+
|
| 8 |
+
GENA-LM is a Family of Open-Source Foundational Models for Long DNA Sequences.
|
| 9 |
+
|
| 10 |
+
`gena-lm-bert-base-fly` is trained on drosophila genome.
|
| 11 |
+
|
| 12 |
+
## Model description
|
| 13 |
+
GENA-LM (`gena-lm-bert-base-fly`) model is trained with a masked language model (MLM) objective, following data preprocessing methods pipeline in the BigBird paper and by masking 15% of tokens. Model config for `gena-lm-bert-base-fly` is similar to the bert-base:
|
| 14 |
+
|
| 15 |
+
- 512 Maximum sequence length
|
| 16 |
+
- 12 Layers, 12 Attention heads
|
| 17 |
+
- 768 Hidden size
|
| 18 |
+
- 32k Vocabulary size
|
| 19 |
+
|
| 20 |
+
We pre-trained `gena-lm-bert-base-fly` using TODO(data). Pre-training was performed for 1,900,000 iterations with batch size 256 and sequence length was equal to 512 tokens. We modified Transformer to use [Pre-Layer normalization](https://arxiv.org/abs/2002.04745).
|
| 21 |
+
|
| 22 |
+
Source code and data: https://github.com/AIRI-Institute/GENA_LM
|
| 23 |
+
|
| 24 |
+
Paper: https://www.biorxiv.org/content/10.1101/2023.06.12.544594v1
|
| 25 |
+
|
| 26 |
+
## Examples
|
| 27 |
+
|
| 28 |
+
### How to load pre-trained model for Masked Language Modeling
|
| 29 |
+
```python
|
| 30 |
+
from transformers import AutoTokenizer, AutoModel
|
| 31 |
+
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bert-base-fly')
|
| 33 |
+
model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bert-base-fly', trust_remote_code=True)
|
| 34 |
+
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### How to load pre-trained model to fine-tune it on classification task
|
| 38 |
+
Get model class from GENA-LM repository:
|
| 39 |
+
```bash
|
| 40 |
+
git clone https://github.com/AIRI-Institute/GENA_LM.git
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
from GENA_LM.src.gena_lm.modeling_bert import BertForSequenceClassification
|
| 45 |
+
from transformers import AutoTokenizer
|
| 46 |
+
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bert-base-fly')
|
| 48 |
+
model = BertForSequenceClassification.from_pretrained('AIRI-Institute/gena-lm-bert-base-fly')
|
| 49 |
+
```
|
| 50 |
+
or you can just download [modeling_bert.py](https://github.com/AIRI-Institute/GENA_LM/tree/main/src/gena_lm) and put it close to your code.
|
| 51 |
+
|
| 52 |
+
OR you can get model class from HuggingFace AutoModel:
|
| 53 |
+
```python
|
| 54 |
+
from transformers import AutoTokenizer, AutoModel
|
| 55 |
+
model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bert-base-fly', trust_remote_code=True)
|
| 56 |
+
gena_module_name = model.__class__.__module__
|
| 57 |
+
print(gena_module_name)
|
| 58 |
+
import importlib
|
| 59 |
+
# available class names:
|
| 60 |
+
# - BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
|
| 61 |
+
# - BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification,
|
| 62 |
+
# - BertForQuestionAnswering
|
| 63 |
+
# check https://huggingface.co/docs/transformers/model_doc/bert
|
| 64 |
+
cls = getattr(importlib.import_module(gena_module_name), 'BertForSequenceClassification')
|
| 65 |
+
print(cls)
|
| 66 |
+
model = cls.from_pretrained('AIRI-Institute/gena-lm-bert-base-fly', num_labels=2)
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
## Evaluation
|
| 70 |
+
For evaluation results, see our paper: https://www.biorxiv.org/content/10.1101/2023.06.12.544594v1
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
## Citation
|
| 74 |
+
```bibtex
|
| 75 |
+
@article{GENA_LM,
|
| 76 |
+
author = {Veniamin Fishman and Yuri Kuratov and Maxim Petrov and Aleksei Shmelev and Denis Shepelin and Nikolay Chekanov and Olga Kardymon and Mikhail Burtsev},
|
| 77 |
+
title = {GENA-LM: A Family of Open-Source Foundational Models for Long DNA Sequences},
|
| 78 |
+
elocation-id = {2023.06.12.544594},
|
| 79 |
+
year = {2023},
|
| 80 |
+
doi = {10.1101/2023.06.12.544594},
|
| 81 |
+
publisher = {Cold Spring Harbor Laboratory},
|
| 82 |
+
URL = {https://www.biorxiv.org/content/early/2023/06/13/2023.06.12.544594},
|
| 83 |
+
eprint = {https://www.biorxiv.org/content/early/2023/06/13/2023.06.12.544594.full.pdf},
|
| 84 |
+
journal = {bioRxiv}
|
| 85 |
+
}
|
| 86 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoModel": "modeling_bert.BertForMaskedLM"
|
| 7 |
+
},
|
| 8 |
+
"attention_probs_dropout_prob": 0.1,
|
| 9 |
+
"gradient_checkpointing": false,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-12,
|
| 16 |
+
"max_position_embeddings": 512,
|
| 17 |
+
"model_type": "bert",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 12,
|
| 20 |
+
"pad_token_id": 3,
|
| 21 |
+
"pre_layer_norm": true,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"transformers_version": "4.6.0.dev0",
|
| 24 |
+
"type_vocab_size": 2,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 32000
|
| 27 |
+
}
|
events.out.tfevents
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ccb8e58b5c0ae682af6655e2cc5c0dd290a4fff9c9868da6138eb85459f21694
|
| 3 |
+
size 2603908
|
modeling_bert.py
ADDED
|
@@ -0,0 +1,2208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# code from huggingface transformers 4.17.0
|
| 2 |
+
# coding=utf-8
|
| 3 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
| 4 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
"""PyTorch BERT model."""
|
| 18 |
+
|
| 19 |
+
import importlib
|
| 20 |
+
import math
|
| 21 |
+
import os
|
| 22 |
+
import warnings
|
| 23 |
+
from dataclasses import dataclass
|
| 24 |
+
from typing import Optional, Tuple
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
import torch.utils.checkpoint
|
| 28 |
+
from packaging import version
|
| 29 |
+
from torch import nn
|
| 30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 31 |
+
|
| 32 |
+
from transformers.activations import ACT2FN
|
| 33 |
+
from transformers.file_utils import (
|
| 34 |
+
ModelOutput,
|
| 35 |
+
add_code_sample_docstrings,
|
| 36 |
+
add_start_docstrings,
|
| 37 |
+
add_start_docstrings_to_model_forward,
|
| 38 |
+
replace_return_docstrings,
|
| 39 |
+
)
|
| 40 |
+
from transformers.modeling_outputs import (
|
| 41 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 42 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 43 |
+
CausalLMOutputWithCrossAttentions,
|
| 44 |
+
MaskedLMOutput,
|
| 45 |
+
MultipleChoiceModelOutput,
|
| 46 |
+
NextSentencePredictorOutput,
|
| 47 |
+
QuestionAnsweringModelOutput,
|
| 48 |
+
SequenceClassifierOutput,
|
| 49 |
+
TokenClassifierOutput,
|
| 50 |
+
)
|
| 51 |
+
from transformers.modeling_utils import (
|
| 52 |
+
PreTrainedModel,
|
| 53 |
+
apply_chunking_to_forward,
|
| 54 |
+
find_pruneable_heads_and_indices,
|
| 55 |
+
prune_linear_layer,
|
| 56 |
+
)
|
| 57 |
+
from transformers.utils import logging
|
| 58 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
logger = logging.get_logger(__name__)
|
| 62 |
+
|
| 63 |
+
_CHECKPOINT_FOR_DOC = "bert-base-uncased"
|
| 64 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
| 65 |
+
_TOKENIZER_FOR_DOC = "BertTokenizer"
|
| 66 |
+
|
| 67 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 68 |
+
"bert-base-uncased",
|
| 69 |
+
"bert-large-uncased",
|
| 70 |
+
"bert-base-cased",
|
| 71 |
+
"bert-large-cased",
|
| 72 |
+
"bert-base-multilingual-uncased",
|
| 73 |
+
"bert-base-multilingual-cased",
|
| 74 |
+
"bert-base-chinese",
|
| 75 |
+
"bert-base-german-cased",
|
| 76 |
+
"bert-large-uncased-whole-word-masking",
|
| 77 |
+
"bert-large-cased-whole-word-masking",
|
| 78 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad",
|
| 79 |
+
"bert-large-cased-whole-word-masking-finetuned-squad",
|
| 80 |
+
"bert-base-cased-finetuned-mrpc",
|
| 81 |
+
"bert-base-german-dbmdz-cased",
|
| 82 |
+
"bert-base-german-dbmdz-uncased",
|
| 83 |
+
"cl-tohoku/bert-base-japanese",
|
| 84 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking",
|
| 85 |
+
"cl-tohoku/bert-base-japanese-char",
|
| 86 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
|
| 87 |
+
"TurkuNLP/bert-base-finnish-cased-v1",
|
| 88 |
+
"TurkuNLP/bert-base-finnish-uncased-v1",
|
| 89 |
+
"wietsedv/bert-base-dutch-cased",
|
| 90 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_cls_by_name(name: str) -> type:
|
| 95 |
+
"""Get class by its name and module path.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
name (str): e.g., transfomers:T5ForConditionalGeneration, modeling_t5:my_class
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
type: found class for `name`
|
| 102 |
+
"""
|
| 103 |
+
module_name, cls_name = name.split(':')
|
| 104 |
+
return getattr(importlib.import_module(module_name), cls_name)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
| 108 |
+
"""Load tf checkpoints in a pytorch model."""
|
| 109 |
+
try:
|
| 110 |
+
import re
|
| 111 |
+
|
| 112 |
+
import numpy as np
|
| 113 |
+
import tensorflow as tf
|
| 114 |
+
except ImportError:
|
| 115 |
+
logger.error(
|
| 116 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
| 117 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
| 118 |
+
)
|
| 119 |
+
raise
|
| 120 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
| 121 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
| 122 |
+
# Load weights from TF model
|
| 123 |
+
init_vars = tf.train.list_variables(tf_path)
|
| 124 |
+
names = []
|
| 125 |
+
arrays = []
|
| 126 |
+
for name, shape in init_vars:
|
| 127 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
| 128 |
+
array = tf.train.load_variable(tf_path, name)
|
| 129 |
+
names.append(name)
|
| 130 |
+
arrays.append(array)
|
| 131 |
+
|
| 132 |
+
for name, array in zip(names, arrays):
|
| 133 |
+
name = name.split("/")
|
| 134 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
| 135 |
+
# which are not required for using pretrained model
|
| 136 |
+
if any(
|
| 137 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
| 138 |
+
for n in name
|
| 139 |
+
):
|
| 140 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
| 141 |
+
continue
|
| 142 |
+
pointer = model
|
| 143 |
+
for m_name in name:
|
| 144 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
| 145 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
| 146 |
+
else:
|
| 147 |
+
scope_names = [m_name]
|
| 148 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
| 149 |
+
pointer = getattr(pointer, "weight")
|
| 150 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
| 151 |
+
pointer = getattr(pointer, "bias")
|
| 152 |
+
elif scope_names[0] == "output_weights":
|
| 153 |
+
pointer = getattr(pointer, "weight")
|
| 154 |
+
elif scope_names[0] == "squad":
|
| 155 |
+
pointer = getattr(pointer, "classifier")
|
| 156 |
+
else:
|
| 157 |
+
try:
|
| 158 |
+
pointer = getattr(pointer, scope_names[0])
|
| 159 |
+
except AttributeError:
|
| 160 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
| 161 |
+
continue
|
| 162 |
+
if len(scope_names) >= 2:
|
| 163 |
+
num = int(scope_names[1])
|
| 164 |
+
pointer = pointer[num]
|
| 165 |
+
if m_name[-11:] == "_embeddings":
|
| 166 |
+
pointer = getattr(pointer, "weight")
|
| 167 |
+
elif m_name == "kernel":
|
| 168 |
+
array = np.transpose(array)
|
| 169 |
+
try:
|
| 170 |
+
if pointer.shape != array.shape:
|
| 171 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
| 172 |
+
except AssertionError as e:
|
| 173 |
+
e.args += (pointer.shape, array.shape)
|
| 174 |
+
raise
|
| 175 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
| 176 |
+
pointer.data = torch.from_numpy(array)
|
| 177 |
+
return model
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class BertEmbeddings(nn.Module):
|
| 181 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
| 182 |
+
|
| 183 |
+
def __init__(self, config):
|
| 184 |
+
super().__init__()
|
| 185 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
| 186 |
+
if config.position_embedding_type == 'absolute':
|
| 187 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
| 188 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 189 |
+
|
| 190 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 191 |
+
# any TensorFlow checkpoint file
|
| 192 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 193 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 194 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 195 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
| 196 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
| 197 |
+
if version.parse(torch.__version__) > version.parse("1.6.0"):
|
| 198 |
+
self.register_buffer(
|
| 199 |
+
"token_type_ids",
|
| 200 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long),
|
| 201 |
+
persistent=False,
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
def forward(
|
| 205 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
| 206 |
+
):
|
| 207 |
+
if input_ids is not None:
|
| 208 |
+
input_shape = input_ids.size()
|
| 209 |
+
else:
|
| 210 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 211 |
+
|
| 212 |
+
seq_length = input_shape[1]
|
| 213 |
+
|
| 214 |
+
if position_ids is None:
|
| 215 |
+
position_ids = self.position_ids[:, past_key_values_length: seq_length + past_key_values_length]
|
| 216 |
+
|
| 217 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
| 218 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
| 219 |
+
# issue #5664
|
| 220 |
+
if token_type_ids is None:
|
| 221 |
+
if hasattr(self, "token_type_ids"):
|
| 222 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
| 223 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
| 224 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 225 |
+
else:
|
| 226 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
| 227 |
+
if inputs_embeds is None:
|
| 228 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 229 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 230 |
+
embeddings = inputs_embeds + token_type_embeddings
|
| 231 |
+
if self.position_embedding_type == "absolute":
|
| 232 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 233 |
+
embeddings += position_embeddings
|
| 234 |
+
embeddings = self.LayerNorm(embeddings)
|
| 235 |
+
embeddings = self.dropout(embeddings)
|
| 236 |
+
return embeddings
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
class BertSelfAttention(nn.Module):
|
| 240 |
+
def __init__(self, config, position_embedding_type=None, has_relative_attention_bias=False):
|
| 241 |
+
"""Bert self-attention with abs/relative position encodings and sparsity.
|
| 242 |
+
|
| 243 |
+
Args:
|
| 244 |
+
config: HF model configuration loaded from json
|
| 245 |
+
position_embedding_type (str, optional): absolute, relative_key, relative_key_query or
|
| 246 |
+
relative_attention_bias . Defaults to None.
|
| 247 |
+
has_relative_attention_bias (bool, optional): Use it's own relative embeddings matrix. Defaults to False.
|
| 248 |
+
"""
|
| 249 |
+
super().__init__()
|
| 250 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
| 251 |
+
raise ValueError(
|
| 252 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 253 |
+
f"heads ({config.num_attention_heads})"
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
self.config = config
|
| 257 |
+
self.is_decoder = config.is_decoder
|
| 258 |
+
# max_seq_len is used in absolute, relative_key & relative_key_query and to pre-define sparsity layout
|
| 259 |
+
self.max_seq_len = config.max_position_embeddings
|
| 260 |
+
|
| 261 |
+
self.num_attention_heads = config.num_attention_heads
|
| 262 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 263 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 264 |
+
|
| 265 |
+
# sparse attention configuration
|
| 266 |
+
self.is_sparse = False
|
| 267 |
+
sparse_config_cls_name = getattr(config, 'sparse_config_cls', None)
|
| 268 |
+
if sparse_config_cls_name:
|
| 269 |
+
self.is_sparse = True
|
| 270 |
+
sparse_config_cls = get_cls_by_name(sparse_config_cls_name)
|
| 271 |
+
self.sparse_config = sparse_config_cls(**self.config.sparse_attention)
|
| 272 |
+
|
| 273 |
+
if self.is_decoder and self.is_sparse:
|
| 274 |
+
raise RuntimeError('SparseAttention with BertModel decoder is not currently supported!')
|
| 275 |
+
|
| 276 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 277 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 278 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 279 |
+
|
| 280 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 281 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 282 |
+
self.position_embedding_type = position_embedding_type or getattr(config, "position_embedding_type", "absolute")
|
| 283 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
| 284 |
+
|
| 285 |
+
if self.is_sparse and self.position_embedding_type not in ['absolute', 'relative_attention_bias', 'rotary']:
|
| 286 |
+
raise RuntimeError(f'SparseAttention supports `absolute`, `relative_attention_bias` and `rotary` position '
|
| 287 |
+
f'embeddings, but: position_embeddings_type = {self.position_embedding_type}')
|
| 288 |
+
|
| 289 |
+
if self.is_decoder and self.position_embedding_type == 'relative_attention_bias':
|
| 290 |
+
raise RuntimeError(f'BertSelfAttention does not support `relative_attention_bias` with `is_decoder` '
|
| 291 |
+
f' = {self.is_decoder}')
|
| 292 |
+
|
| 293 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
| 294 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 295 |
+
self.max_seq_len = 2 * config.max_position_embeddings
|
| 296 |
+
self.distance_embedding = nn.Embedding(self.max_distance - 1, self.attention_head_size)
|
| 297 |
+
elif self.position_embedding_type == 'relative_attention_bias' and self.has_relative_attention_bias:
|
| 298 |
+
self.relative_attention_num_buckets = self.config.relative_attention_num_buckets
|
| 299 |
+
self.relative_last_bucket_distance = self.config.relative_last_bucket_distance
|
| 300 |
+
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.num_attention_heads)
|
| 301 |
+
elif self.position_embedding_type == 'rotary':
|
| 302 |
+
self.rotary_base = getattr(config, 'rotary_base', None)
|
| 303 |
+
self.rotary_dim = getattr(config, 'rotary_dim', self.attention_head_size)
|
| 304 |
+
self.rotary_emb = RotaryEmbedding(self.rotary_dim, base=self.rotary_base)
|
| 305 |
+
|
| 306 |
+
if self.is_sparse:
|
| 307 |
+
try:
|
| 308 |
+
from deepspeed.ops.sparse_attention import SparseSelfAttention
|
| 309 |
+
except ImportError as e:
|
| 310 |
+
logger.error(f'DeepSpeed is required for Sparse Ops: {e}')
|
| 311 |
+
raise
|
| 312 |
+
self.sparse_self_attention = SparseSelfAttention(self.sparse_config, max_seq_length=self.max_seq_len)
|
| 313 |
+
|
| 314 |
+
def transpose_for_scores(self, x):
|
| 315 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 316 |
+
x = x.view(new_x_shape)
|
| 317 |
+
return x.permute(0, 2, 1, 3)
|
| 318 |
+
|
| 319 |
+
def transpose_key_for_scores(self, x):
|
| 320 |
+
# to remove redundant transpose in attention_scores matmul operation
|
| 321 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 322 |
+
x = x.view(*new_x_shape)
|
| 323 |
+
return x.permute(0, 2, 3, 1)
|
| 324 |
+
|
| 325 |
+
@staticmethod
|
| 326 |
+
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
| 327 |
+
"""
|
| 328 |
+
Adapted from Mesh Tensorflow:
|
| 329 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
| 330 |
+
|
| 331 |
+
#todo: refactor, the same code is used in modeling_t5
|
| 332 |
+
|
| 333 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
| 334 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
| 335 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
| 336 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
| 337 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
| 338 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
| 339 |
+
|
| 340 |
+
Args:
|
| 341 |
+
relative_position: an int32 Tensor
|
| 342 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
| 343 |
+
num_buckets: an integer
|
| 344 |
+
max_distance: an integer
|
| 345 |
+
|
| 346 |
+
Returns:
|
| 347 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
| 348 |
+
"""
|
| 349 |
+
relative_buckets = 0
|
| 350 |
+
if bidirectional:
|
| 351 |
+
num_buckets //= 2
|
| 352 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
| 353 |
+
relative_position = torch.abs(relative_position)
|
| 354 |
+
else:
|
| 355 |
+
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
| 356 |
+
# now relative_position is in the range [0, inf)
|
| 357 |
+
|
| 358 |
+
# half of the buckets are for exact increments in positions
|
| 359 |
+
max_exact = num_buckets // 2
|
| 360 |
+
is_small = relative_position < max_exact
|
| 361 |
+
|
| 362 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
| 363 |
+
relative_postion_if_large = max_exact + (
|
| 364 |
+
torch.log(relative_position.float() / max_exact)
|
| 365 |
+
/ math.log(max_distance / max_exact)
|
| 366 |
+
* (num_buckets - max_exact)
|
| 367 |
+
).to(torch.long)
|
| 368 |
+
relative_postion_if_large = torch.min(
|
| 369 |
+
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
relative_buckets += torch.where(is_small, relative_position, relative_postion_if_large)
|
| 373 |
+
return relative_buckets
|
| 374 |
+
|
| 375 |
+
def compute_bias(self, query_length, key_length):
|
| 376 |
+
""" Compute binned relative position bias """
|
| 377 |
+
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
|
| 378 |
+
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
|
| 379 |
+
relative_position = memory_position - context_position # shape (query_length, key_length)
|
| 380 |
+
relative_position_bucket = self._relative_position_bucket(
|
| 381 |
+
relative_position, # shape (query_length, key_length)
|
| 382 |
+
bidirectional=(not self.is_decoder),
|
| 383 |
+
num_buckets=self.relative_attention_num_buckets,
|
| 384 |
+
max_distance=self.relative_last_bucket_distance,
|
| 385 |
+
)
|
| 386 |
+
relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
|
| 387 |
+
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
| 388 |
+
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
| 389 |
+
return values
|
| 390 |
+
|
| 391 |
+
def get_relative_attention_bias(self, position_bias, batch_size, query_length, key_length):
|
| 392 |
+
if position_bias is None and self.has_relative_attention_bias:
|
| 393 |
+
position_bias = self.compute_bias(query_length, key_length)
|
| 394 |
+
position_bias = position_bias.repeat(batch_size, 1, 1, 1)
|
| 395 |
+
return position_bias
|
| 396 |
+
|
| 397 |
+
def forward(
|
| 398 |
+
self,
|
| 399 |
+
hidden_states,
|
| 400 |
+
attention_mask=None,
|
| 401 |
+
head_mask=None,
|
| 402 |
+
encoder_hidden_states=None,
|
| 403 |
+
encoder_attention_mask=None,
|
| 404 |
+
past_key_value=None,
|
| 405 |
+
position_bias=None,
|
| 406 |
+
output_attentions=False,
|
| 407 |
+
):
|
| 408 |
+
mixed_query_layer = self.query(hidden_states)
|
| 409 |
+
|
| 410 |
+
# If this is instantiated as a cross-attention module, the keys
|
| 411 |
+
# and values come from an encoder; the attention mask needs to be
|
| 412 |
+
# such that the encoder's padding tokens are not attended to.
|
| 413 |
+
is_cross_attention = encoder_hidden_states is not None
|
| 414 |
+
|
| 415 |
+
if is_cross_attention and past_key_value is not None:
|
| 416 |
+
# reuse k,v, cross_attentions
|
| 417 |
+
key_layer = past_key_value[0]
|
| 418 |
+
value_layer = past_key_value[1]
|
| 419 |
+
attention_mask = encoder_attention_mask
|
| 420 |
+
elif is_cross_attention:
|
| 421 |
+
key_layer = self.transpose_key_for_scores(self.key(encoder_hidden_states))
|
| 422 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
| 423 |
+
attention_mask = encoder_attention_mask
|
| 424 |
+
elif past_key_value is not None:
|
| 425 |
+
key_layer = self.transpose_key_for_scores(self.key(hidden_states))
|
| 426 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 427 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
| 428 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
| 429 |
+
else:
|
| 430 |
+
key_layer = self.transpose_key_for_scores(self.key(hidden_states))
|
| 431 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 432 |
+
|
| 433 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
| 434 |
+
|
| 435 |
+
if self.is_decoder:
|
| 436 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
| 437 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
| 438 |
+
# key/value_states (first "if" case)
|
| 439 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
| 440 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
| 441 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
| 442 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
| 443 |
+
past_key_value = (key_layer, value_layer)
|
| 444 |
+
|
| 445 |
+
bs, seq_len, _ = hidden_states.shape
|
| 446 |
+
# query shape: bs x n_heads x seq_len x head_dim
|
| 447 |
+
# key shape: bs x n_heads x head_dim x seq_len
|
| 448 |
+
|
| 449 |
+
if self.position_embedding_type == 'rotary':
|
| 450 |
+
# todo: in key_layer and value_layer past states already concatenated
|
| 451 |
+
# but rotary embeddings should not be applied to past states
|
| 452 |
+
if past_key_value is not None:
|
| 453 |
+
raise RuntimeError(f'past_key_values is not None are not supported in BertSelfAttention.forward with '
|
| 454 |
+
f'position_embedding_type = {self.position_embedding_type}.')
|
| 455 |
+
# traspose to bs x n_heads x seq_len x head_dim
|
| 456 |
+
key_layer = key_layer.transpose(-1, -2)
|
| 457 |
+
if self.rotary_dim < self.attention_head_size:
|
| 458 |
+
query_rot = query_layer[..., :self.rotary_dim]
|
| 459 |
+
query_pass = query_layer[..., self.rotary_dim:]
|
| 460 |
+
|
| 461 |
+
key_rot = key_layer[..., :self.rotary_dim]
|
| 462 |
+
key_pass = key_layer[..., self.rotary_dim:]
|
| 463 |
+
else: # full rotary
|
| 464 |
+
query_rot = query_layer
|
| 465 |
+
key_rot = key_layer
|
| 466 |
+
|
| 467 |
+
cos, sin = self.rotary_emb(key_rot, seq_len=seq_len)
|
| 468 |
+
query_layer, key_layer = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, offset=0)
|
| 469 |
+
if self.rotary_dim < self.attention_head_size:
|
| 470 |
+
query_layer = torch.cat((query_layer, query_pass), dim=-1)
|
| 471 |
+
key_layer = torch.cat((key_layer, key_pass), dim=-1)
|
| 472 |
+
# transpose to bs x n_heads x head_dim x seq_len
|
| 473 |
+
key_layer = key_layer.transpose(-1, -2)
|
| 474 |
+
|
| 475 |
+
if not self.is_sparse:
|
| 476 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 477 |
+
attention_scores = torch.matmul(query_layer, key_layer)
|
| 478 |
+
|
| 479 |
+
if self.position_embedding_type in ["relative_key", "relative_key_query"]:
|
| 480 |
+
position_ids_l = torch.arange(seq_len, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
| 481 |
+
position_ids_r = torch.arange(seq_len, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
| 482 |
+
distance = position_ids_l - position_ids_r
|
| 483 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
| 484 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
| 485 |
+
|
| 486 |
+
# https://arxiv.org/abs/2009.13658
|
| 487 |
+
if self.position_embedding_type == "relative_key":
|
| 488 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
| 489 |
+
attention_scores = attention_scores + relative_position_scores
|
| 490 |
+
elif self.position_embedding_type == "relative_key_query":
|
| 491 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
| 492 |
+
relative_position_scores_key = torch.einsum("bhdr,lrd->bhlr", key_layer, positional_embedding)
|
| 493 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
| 494 |
+
elif self.position_embedding_type == 'relative_attention_bias':
|
| 495 |
+
position_bias = self.get_relative_attention_bias(position_bias, bs, seq_len, seq_len)
|
| 496 |
+
attention_scores = attention_scores + position_bias
|
| 497 |
+
|
| 498 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 499 |
+
if attention_mask is not None:
|
| 500 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 501 |
+
attention_scores = attention_scores + attention_mask
|
| 502 |
+
|
| 503 |
+
# Normalize the attention scores to probabilities.
|
| 504 |
+
attention_probs = self.softmax(attention_scores)
|
| 505 |
+
|
| 506 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 507 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 508 |
+
attention_probs = self.dropout(attention_probs)
|
| 509 |
+
|
| 510 |
+
# Mask heads if we want to
|
| 511 |
+
if head_mask is not None:
|
| 512 |
+
attention_probs = attention_probs * head_mask
|
| 513 |
+
|
| 514 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
| 515 |
+
else:
|
| 516 |
+
# sparse attention
|
| 517 |
+
# todo: return attention_probs
|
| 518 |
+
# todo: support relative_key -> need to change einsum with sparse operators..
|
| 519 |
+
# sparse attention supports masks with following shapes:
|
| 520 |
+
# key_padding_mask: (bs x seq_len) or (bs x 1 x 1 x seq_len)
|
| 521 |
+
# attention_mask: seq_len x seq_len or (1 x 1 x seq_len x seq_len)
|
| 522 |
+
if self.position_embedding_type == 'relative_attention_bias':
|
| 523 |
+
position_bias = self.get_relative_attention_bias(position_bias, bs, seq_len, seq_len)
|
| 524 |
+
|
| 525 |
+
query_dtype = query_layer.dtype
|
| 526 |
+
if query_dtype != torch.half:
|
| 527 |
+
# deepspeed sparse_self_attention supports only fp16 inputs
|
| 528 |
+
# manually cast to half in case if running in fp32 or O1 modes
|
| 529 |
+
query_layer, key_layer, value_layer = query_layer.half(), key_layer.half(), value_layer.half()
|
| 530 |
+
# attention_mask = attention_mask.half()
|
| 531 |
+
if position_bias is not None:
|
| 532 |
+
position_bias = position_bias.half()
|
| 533 |
+
context_layer = self.sparse_self_attention(query_layer, key_layer, value_layer, rpe=position_bias,
|
| 534 |
+
key_padding_mask=attention_mask)
|
| 535 |
+
if query_dtype == torch.float:
|
| 536 |
+
context_layer = context_layer.float()
|
| 537 |
+
|
| 538 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 539 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 540 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 541 |
+
|
| 542 |
+
if self.is_sparse and output_attentions:
|
| 543 |
+
# todo: return sparse attention_scores or None, to not break the run
|
| 544 |
+
raise RuntimeError(f'SparseAttention does not support output_attention = {output_attentions}')
|
| 545 |
+
|
| 546 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
| 547 |
+
|
| 548 |
+
if self.position_embedding_type == 'relative_attention_bias':
|
| 549 |
+
outputs = outputs + (position_bias,)
|
| 550 |
+
|
| 551 |
+
if self.is_decoder:
|
| 552 |
+
outputs = outputs + (past_key_value,)
|
| 553 |
+
return outputs
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
class BertSelfOutput(nn.Module):
|
| 557 |
+
def __init__(self, config):
|
| 558 |
+
super().__init__()
|
| 559 |
+
self.pre_layer_norm = getattr(config, 'pre_layer_norm', False)
|
| 560 |
+
self.bert_output_layer = True
|
| 561 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 562 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 563 |
+
if not self.pre_layer_norm:
|
| 564 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 565 |
+
|
| 566 |
+
def forward(self, hidden_states, input_tensor):
|
| 567 |
+
hidden_states = self.dense(hidden_states)
|
| 568 |
+
hidden_states = self.dropout(hidden_states)
|
| 569 |
+
if not self.pre_layer_norm:
|
| 570 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 571 |
+
return hidden_states
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
class BertAttention(nn.Module):
|
| 575 |
+
def __init__(self, config, position_embedding_type=None, has_relative_attention_bias=False):
|
| 576 |
+
super().__init__()
|
| 577 |
+
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type,
|
| 578 |
+
has_relative_attention_bias=has_relative_attention_bias)
|
| 579 |
+
self.output = BertSelfOutput(config)
|
| 580 |
+
self.pruned_heads = set()
|
| 581 |
+
|
| 582 |
+
def prune_heads(self, heads):
|
| 583 |
+
if len(heads) == 0:
|
| 584 |
+
return
|
| 585 |
+
heads, index = find_pruneable_heads_and_indices(
|
| 586 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
| 587 |
+
)
|
| 588 |
+
|
| 589 |
+
# Prune linear layers
|
| 590 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
| 591 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
| 592 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
| 593 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
| 594 |
+
|
| 595 |
+
# Update hyper params and store pruned heads
|
| 596 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
| 597 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
| 598 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 599 |
+
|
| 600 |
+
def forward(
|
| 601 |
+
self,
|
| 602 |
+
hidden_states,
|
| 603 |
+
attention_mask=None,
|
| 604 |
+
head_mask=None,
|
| 605 |
+
encoder_hidden_states=None,
|
| 606 |
+
encoder_attention_mask=None,
|
| 607 |
+
past_key_value=None,
|
| 608 |
+
position_bias=None,
|
| 609 |
+
output_attentions=False,
|
| 610 |
+
):
|
| 611 |
+
self_outputs = self.self(
|
| 612 |
+
hidden_states,
|
| 613 |
+
attention_mask,
|
| 614 |
+
head_mask,
|
| 615 |
+
encoder_hidden_states,
|
| 616 |
+
encoder_attention_mask,
|
| 617 |
+
past_key_value,
|
| 618 |
+
position_bias,
|
| 619 |
+
output_attentions,
|
| 620 |
+
)
|
| 621 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
| 622 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
| 623 |
+
return outputs
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
class BertIntermediate(nn.Module):
|
| 627 |
+
def __init__(self, config):
|
| 628 |
+
super().__init__()
|
| 629 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 630 |
+
if isinstance(config.hidden_act, str):
|
| 631 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
| 632 |
+
else:
|
| 633 |
+
self.intermediate_act_fn = config.hidden_act
|
| 634 |
+
|
| 635 |
+
def forward(self, hidden_states):
|
| 636 |
+
hidden_states = self.dense(hidden_states)
|
| 637 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
| 638 |
+
return hidden_states
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
class BertOutput(nn.Module):
|
| 642 |
+
def __init__(self, config):
|
| 643 |
+
super().__init__()
|
| 644 |
+
self.pre_layer_norm = getattr(config, 'pre_layer_norm', False)
|
| 645 |
+
self.bert_output_layer = True
|
| 646 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 647 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 648 |
+
if not self.pre_layer_norm:
|
| 649 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 650 |
+
|
| 651 |
+
def forward(self, hidden_states, input_tensor):
|
| 652 |
+
hidden_states = self.dense(hidden_states)
|
| 653 |
+
hidden_states = self.dropout(hidden_states)
|
| 654 |
+
if not self.pre_layer_norm:
|
| 655 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
| 656 |
+
return hidden_states
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
class BertLayer(nn.Module):
|
| 660 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
| 661 |
+
super().__init__()
|
| 662 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
| 663 |
+
self.seq_len_dim = 1
|
| 664 |
+
self.pre_layer_norm = getattr(config, 'pre_layer_norm', False)
|
| 665 |
+
if self.pre_layer_norm:
|
| 666 |
+
self.pre_attention_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 667 |
+
self.post_attention_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 668 |
+
self.attention = BertAttention(config, has_relative_attention_bias=has_relative_attention_bias)
|
| 669 |
+
self.is_decoder = config.is_decoder
|
| 670 |
+
self.add_cross_attention = config.add_cross_attention
|
| 671 |
+
if self.add_cross_attention:
|
| 672 |
+
if not self.is_decoder:
|
| 673 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
| 674 |
+
self.crossattention = BertAttention(config, position_embedding_type="absolute")
|
| 675 |
+
self.intermediate = BertIntermediate(config)
|
| 676 |
+
self.output = BertOutput(config)
|
| 677 |
+
|
| 678 |
+
def forward(
|
| 679 |
+
self,
|
| 680 |
+
hidden_states,
|
| 681 |
+
attention_mask=None,
|
| 682 |
+
head_mask=None,
|
| 683 |
+
encoder_hidden_states=None,
|
| 684 |
+
encoder_attention_mask=None,
|
| 685 |
+
past_key_value=None,
|
| 686 |
+
position_bias=None,
|
| 687 |
+
output_attentions=False,
|
| 688 |
+
):
|
| 689 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
| 690 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
| 691 |
+
self_attention_outputs = self.attention(
|
| 692 |
+
hidden_states if not self.pre_layer_norm else self.pre_attention_ln(hidden_states),
|
| 693 |
+
attention_mask,
|
| 694 |
+
head_mask,
|
| 695 |
+
position_bias=position_bias,
|
| 696 |
+
output_attentions=output_attentions,
|
| 697 |
+
past_key_value=self_attn_past_key_value,
|
| 698 |
+
)
|
| 699 |
+
attention_output = self_attention_outputs[0]
|
| 700 |
+
|
| 701 |
+
# if decoder, the last output is tuple of self-attn cache
|
| 702 |
+
if self.is_decoder:
|
| 703 |
+
outputs = self_attention_outputs[1:-1]
|
| 704 |
+
present_key_value = self_attention_outputs[-1]
|
| 705 |
+
else:
|
| 706 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
| 707 |
+
|
| 708 |
+
cross_attn_present_key_value = None
|
| 709 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
| 710 |
+
if not hasattr(self, "crossattention"):
|
| 711 |
+
raise ValueError(
|
| 712 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
| 713 |
+
)
|
| 714 |
+
|
| 715 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
| 716 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
| 717 |
+
cross_attention_outputs = self.crossattention(
|
| 718 |
+
attention_output,
|
| 719 |
+
attention_mask,
|
| 720 |
+
head_mask,
|
| 721 |
+
encoder_hidden_states,
|
| 722 |
+
encoder_attention_mask,
|
| 723 |
+
cross_attn_past_key_value,
|
| 724 |
+
position_bias,
|
| 725 |
+
output_attentions,
|
| 726 |
+
)
|
| 727 |
+
attention_output = cross_attention_outputs[0]
|
| 728 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
| 729 |
+
|
| 730 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
| 731 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
| 732 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
| 733 |
+
|
| 734 |
+
if self.pre_layer_norm:
|
| 735 |
+
attention_output = hidden_states + attention_output
|
| 736 |
+
|
| 737 |
+
layer_output = apply_chunking_to_forward(
|
| 738 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
outputs = (layer_output,) + outputs
|
| 742 |
+
|
| 743 |
+
# if decoder, return the attn key/values as the last output
|
| 744 |
+
if self.is_decoder:
|
| 745 |
+
outputs = outputs + (present_key_value,)
|
| 746 |
+
|
| 747 |
+
return outputs
|
| 748 |
+
|
| 749 |
+
def feed_forward_chunk(self, attention_output):
|
| 750 |
+
intermediate_inp = attention_output if not self.pre_layer_norm else self.post_attention_ln(attention_output)
|
| 751 |
+
intermediate_output = self.intermediate(intermediate_inp)
|
| 752 |
+
layer_output = self.output(intermediate_output, attention_output)
|
| 753 |
+
if self.pre_layer_norm:
|
| 754 |
+
layer_output = layer_output + attention_output
|
| 755 |
+
return layer_output
|
| 756 |
+
|
| 757 |
+
|
| 758 |
+
class BertEncoder(nn.Module):
|
| 759 |
+
def __init__(self, config):
|
| 760 |
+
super().__init__()
|
| 761 |
+
self.config = config
|
| 762 |
+
self.pre_layer_norm = getattr(config, 'pre_layer_norm', False)
|
| 763 |
+
# last_layer_ln is used with pre_layer_norm:
|
| 764 |
+
# pre_layer_norm: https://arxiv.org/abs/2002.04745
|
| 765 |
+
# x = x + mha(ln(x))
|
| 766 |
+
# x = x + ffn(mha)
|
| 767 |
+
# if last_layer:
|
| 768 |
+
# x = ln(x)
|
| 769 |
+
# post_layer_norm (standart bert):
|
| 770 |
+
# x = ln(x + mha(x))
|
| 771 |
+
# x = ln(x + ffn(x))
|
| 772 |
+
self.last_layer_norm = getattr(config, 'last_layer_norm', self.pre_layer_norm)
|
| 773 |
+
if not self.pre_layer_norm and self.last_layer_norm:
|
| 774 |
+
raise RuntimeError('last_layer_norm could be used only with pre_layer_norm=True')
|
| 775 |
+
self.layer = nn.ModuleList(
|
| 776 |
+
[BertLayer(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_hidden_layers)]
|
| 777 |
+
)
|
| 778 |
+
self.gradient_checkpointing = False
|
| 779 |
+
if self.pre_layer_norm and self.last_layer_norm:
|
| 780 |
+
self.last_layer_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 781 |
+
|
| 782 |
+
def forward(
|
| 783 |
+
self,
|
| 784 |
+
hidden_states,
|
| 785 |
+
attention_mask=None,
|
| 786 |
+
head_mask=None,
|
| 787 |
+
encoder_hidden_states=None,
|
| 788 |
+
encoder_attention_mask=None,
|
| 789 |
+
past_key_values=None,
|
| 790 |
+
use_cache=None,
|
| 791 |
+
output_attentions=False,
|
| 792 |
+
output_hidden_states=False,
|
| 793 |
+
return_dict=True,
|
| 794 |
+
):
|
| 795 |
+
all_hidden_states = () if output_hidden_states else None
|
| 796 |
+
all_self_attentions = () if output_attentions else None
|
| 797 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 798 |
+
position_bias = None
|
| 799 |
+
|
| 800 |
+
next_decoder_cache = () if use_cache else None
|
| 801 |
+
for i, layer_module in enumerate(self.layer):
|
| 802 |
+
if output_hidden_states:
|
| 803 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 804 |
+
|
| 805 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 806 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
| 807 |
+
|
| 808 |
+
if self.gradient_checkpointing and self.training:
|
| 809 |
+
|
| 810 |
+
if use_cache:
|
| 811 |
+
logger.warning(
|
| 812 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 813 |
+
)
|
| 814 |
+
use_cache = False
|
| 815 |
+
|
| 816 |
+
def create_custom_forward(module):
|
| 817 |
+
def custom_forward(*inputs):
|
| 818 |
+
return module(*inputs, past_key_value, position_bias, output_attentions)
|
| 819 |
+
|
| 820 |
+
return custom_forward
|
| 821 |
+
|
| 822 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 823 |
+
create_custom_forward(layer_module),
|
| 824 |
+
hidden_states,
|
| 825 |
+
attention_mask,
|
| 826 |
+
layer_head_mask,
|
| 827 |
+
encoder_hidden_states,
|
| 828 |
+
encoder_attention_mask,
|
| 829 |
+
)
|
| 830 |
+
else:
|
| 831 |
+
layer_outputs = layer_module(
|
| 832 |
+
hidden_states,
|
| 833 |
+
attention_mask,
|
| 834 |
+
layer_head_mask,
|
| 835 |
+
encoder_hidden_states,
|
| 836 |
+
encoder_attention_mask,
|
| 837 |
+
past_key_value,
|
| 838 |
+
position_bias,
|
| 839 |
+
output_attentions,
|
| 840 |
+
)
|
| 841 |
+
|
| 842 |
+
hidden_states = layer_outputs[0]
|
| 843 |
+
if use_cache:
|
| 844 |
+
next_decoder_cache += (layer_outputs[-1],)
|
| 845 |
+
if output_attentions:
|
| 846 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 847 |
+
if self.config.add_cross_attention:
|
| 848 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
| 849 |
+
|
| 850 |
+
if self.config.position_embedding_type == 'relative_attention_bias':
|
| 851 |
+
if not output_attentions:
|
| 852 |
+
position_bias = layer_outputs[1]
|
| 853 |
+
else:
|
| 854 |
+
position_bias = layer_outputs[2]
|
| 855 |
+
|
| 856 |
+
if self.pre_layer_norm and self.last_layer_norm:
|
| 857 |
+
hidden_states = self.last_layer_ln(hidden_states)
|
| 858 |
+
|
| 859 |
+
if output_hidden_states:
|
| 860 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 861 |
+
|
| 862 |
+
if not return_dict:
|
| 863 |
+
return tuple(
|
| 864 |
+
v
|
| 865 |
+
for v in [
|
| 866 |
+
hidden_states,
|
| 867 |
+
next_decoder_cache,
|
| 868 |
+
all_hidden_states,
|
| 869 |
+
all_self_attentions,
|
| 870 |
+
all_cross_attentions,
|
| 871 |
+
]
|
| 872 |
+
if v is not None
|
| 873 |
+
)
|
| 874 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 875 |
+
last_hidden_state=hidden_states,
|
| 876 |
+
past_key_values=next_decoder_cache,
|
| 877 |
+
hidden_states=all_hidden_states,
|
| 878 |
+
attentions=all_self_attentions,
|
| 879 |
+
cross_attentions=all_cross_attentions,
|
| 880 |
+
)
|
| 881 |
+
|
| 882 |
+
|
| 883 |
+
class BertPooler(nn.Module):
|
| 884 |
+
def __init__(self, config):
|
| 885 |
+
super().__init__()
|
| 886 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 887 |
+
self.activation = nn.Tanh()
|
| 888 |
+
|
| 889 |
+
def forward(self, hidden_states):
|
| 890 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 891 |
+
# to the first token.
|
| 892 |
+
first_token_tensor = hidden_states[:, 0]
|
| 893 |
+
pooled_output = self.dense(first_token_tensor)
|
| 894 |
+
pooled_output = self.activation(pooled_output)
|
| 895 |
+
return pooled_output
|
| 896 |
+
|
| 897 |
+
|
| 898 |
+
class BertPredictionHeadTransform(nn.Module):
|
| 899 |
+
def __init__(self, config):
|
| 900 |
+
super().__init__()
|
| 901 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 902 |
+
if isinstance(config.hidden_act, str):
|
| 903 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
| 904 |
+
else:
|
| 905 |
+
self.transform_act_fn = config.hidden_act
|
| 906 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 907 |
+
|
| 908 |
+
def forward(self, hidden_states):
|
| 909 |
+
hidden_states = self.dense(hidden_states)
|
| 910 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 911 |
+
hidden_states = self.LayerNorm(hidden_states)
|
| 912 |
+
return hidden_states
|
| 913 |
+
|
| 914 |
+
|
| 915 |
+
class BertLMPredictionHead(nn.Module):
|
| 916 |
+
def __init__(self, config):
|
| 917 |
+
super().__init__()
|
| 918 |
+
self.transform = BertPredictionHeadTransform(config)
|
| 919 |
+
|
| 920 |
+
# The output weights are the same as the input embeddings, but there is
|
| 921 |
+
# an output-only bias for each token.
|
| 922 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 923 |
+
|
| 924 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
| 925 |
+
|
| 926 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
| 927 |
+
self.decoder.bias = self.bias
|
| 928 |
+
|
| 929 |
+
def forward(self, hidden_states):
|
| 930 |
+
hidden_states = self.transform(hidden_states)
|
| 931 |
+
hidden_states = self.decoder(hidden_states)
|
| 932 |
+
return hidden_states
|
| 933 |
+
|
| 934 |
+
|
| 935 |
+
class BertOnlyMLMHead(nn.Module):
|
| 936 |
+
def __init__(self, config):
|
| 937 |
+
super().__init__()
|
| 938 |
+
self.predictions = BertLMPredictionHead(config)
|
| 939 |
+
|
| 940 |
+
def forward(self, sequence_output):
|
| 941 |
+
prediction_scores = self.predictions(sequence_output)
|
| 942 |
+
return prediction_scores
|
| 943 |
+
|
| 944 |
+
|
| 945 |
+
class BertOnlyNSPHead(nn.Module):
|
| 946 |
+
def __init__(self, config):
|
| 947 |
+
super().__init__()
|
| 948 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
| 949 |
+
|
| 950 |
+
def forward(self, pooled_output):
|
| 951 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
| 952 |
+
return seq_relationship_score
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
class BertPreTrainingHeads(nn.Module):
|
| 956 |
+
def __init__(self, config):
|
| 957 |
+
super().__init__()
|
| 958 |
+
self.predictions = BertLMPredictionHead(config)
|
| 959 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
| 960 |
+
|
| 961 |
+
def forward(self, sequence_output, pooled_output):
|
| 962 |
+
prediction_scores = self.predictions(sequence_output)
|
| 963 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
| 964 |
+
return prediction_scores, seq_relationship_score
|
| 965 |
+
|
| 966 |
+
|
| 967 |
+
class BertPreTrainedModel(PreTrainedModel):
|
| 968 |
+
"""
|
| 969 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 970 |
+
models.
|
| 971 |
+
"""
|
| 972 |
+
|
| 973 |
+
config_class = BertConfig
|
| 974 |
+
load_tf_weights = load_tf_weights_in_bert
|
| 975 |
+
base_model_prefix = "bert"
|
| 976 |
+
supports_gradient_checkpointing = True
|
| 977 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
| 978 |
+
|
| 979 |
+
def _init_weights(self, module):
|
| 980 |
+
"""Initialize the weights"""
|
| 981 |
+
if isinstance(module, nn.Linear):
|
| 982 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 983 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 984 |
+
std = self.config.initializer_range
|
| 985 |
+
if hasattr(module, 'bert_output_layer') and self.config.pre_layer_norm:
|
| 986 |
+
std /= math.sqrt(2.0 * self.config.num_hidden_layers)
|
| 987 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 988 |
+
if module.bias is not None:
|
| 989 |
+
module.bias.data.zero_()
|
| 990 |
+
elif isinstance(module, nn.Embedding):
|
| 991 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 992 |
+
if module.padding_idx is not None:
|
| 993 |
+
module.weight.data[module.padding_idx].zero_()
|
| 994 |
+
elif isinstance(module, nn.LayerNorm):
|
| 995 |
+
module.bias.data.zero_()
|
| 996 |
+
module.weight.data.fill_(1.0)
|
| 997 |
+
|
| 998 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 999 |
+
if isinstance(module, BertEncoder):
|
| 1000 |
+
module.gradient_checkpointing = value
|
| 1001 |
+
|
| 1002 |
+
|
| 1003 |
+
@dataclass
|
| 1004 |
+
class BertForPreTrainingOutput(ModelOutput):
|
| 1005 |
+
"""
|
| 1006 |
+
Output type of [`BertForPreTraining`].
|
| 1007 |
+
|
| 1008 |
+
Args:
|
| 1009 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
| 1010 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
| 1011 |
+
(classification) loss.
|
| 1012 |
+
mlm_loss: masked language modeling loss
|
| 1013 |
+
nsp_loss: next sequence prediction loss
|
| 1014 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 1015 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 1016 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
| 1017 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
| 1018 |
+
before SoftMax).
|
| 1019 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 1020 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
| 1021 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
| 1022 |
+
|
| 1023 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
| 1024 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 1025 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 1026 |
+
sequence_length)`.
|
| 1027 |
+
|
| 1028 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 1029 |
+
heads.
|
| 1030 |
+
"""
|
| 1031 |
+
|
| 1032 |
+
loss: Optional[torch.FloatTensor] = None
|
| 1033 |
+
mlm_loss: Optional[torch.FloatTensor] = None
|
| 1034 |
+
nsp_loss: Optional[torch.FloatTensor] = None
|
| 1035 |
+
prediction_logits: torch.FloatTensor = None
|
| 1036 |
+
seq_relationship_logits: torch.FloatTensor = None
|
| 1037 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 1038 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 1039 |
+
|
| 1040 |
+
|
| 1041 |
+
BERT_START_DOCSTRING = r"""
|
| 1042 |
+
|
| 1043 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1044 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1045 |
+
etc.)
|
| 1046 |
+
|
| 1047 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1048 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1049 |
+
and behavior.
|
| 1050 |
+
|
| 1051 |
+
Parameters:
|
| 1052 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
| 1053 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 1054 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1055 |
+
"""
|
| 1056 |
+
|
| 1057 |
+
BERT_INPUTS_DOCSTRING = r"""
|
| 1058 |
+
Args:
|
| 1059 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 1060 |
+
Indices of input sequence tokens in the vocabulary.
|
| 1061 |
+
|
| 1062 |
+
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1063 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1064 |
+
|
| 1065 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1066 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 1067 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1068 |
+
|
| 1069 |
+
- 1 for tokens that are **not masked**,
|
| 1070 |
+
- 0 for tokens that are **masked**.
|
| 1071 |
+
|
| 1072 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1073 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 1074 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 1075 |
+
1]`:
|
| 1076 |
+
|
| 1077 |
+
- 0 corresponds to a *sentence A* token,
|
| 1078 |
+
- 1 corresponds to a *sentence B* token.
|
| 1079 |
+
|
| 1080 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 1081 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 1082 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1083 |
+
config.max_position_embeddings - 1]`.
|
| 1084 |
+
|
| 1085 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1086 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 1087 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 1088 |
+
|
| 1089 |
+
- 1 indicates the head is **not masked**,
|
| 1090 |
+
- 0 indicates the head is **masked**.
|
| 1091 |
+
|
| 1092 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 1093 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1094 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1095 |
+
model's internal embedding lookup matrix.
|
| 1096 |
+
output_attentions (`bool`, *optional*):
|
| 1097 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1098 |
+
tensors for more detail.
|
| 1099 |
+
output_hidden_states (`bool`, *optional*):
|
| 1100 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1101 |
+
more detail.
|
| 1102 |
+
return_dict (`bool`, *optional*):
|
| 1103 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
| 1104 |
+
"""
|
| 1105 |
+
|
| 1106 |
+
|
| 1107 |
+
@add_start_docstrings(
|
| 1108 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
| 1109 |
+
BERT_START_DOCSTRING,
|
| 1110 |
+
)
|
| 1111 |
+
class BertModel(BertPreTrainedModel):
|
| 1112 |
+
"""
|
| 1113 |
+
|
| 1114 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
| 1115 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
| 1116 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
| 1117 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
| 1118 |
+
|
| 1119 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
| 1120 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
| 1121 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
| 1122 |
+
"""
|
| 1123 |
+
|
| 1124 |
+
def __init__(self, config, add_pooling_layer=True):
|
| 1125 |
+
super().__init__(config)
|
| 1126 |
+
self.config = config
|
| 1127 |
+
|
| 1128 |
+
if hasattr(config, 'sparse_attention'):
|
| 1129 |
+
self.is_sparse = True
|
| 1130 |
+
self.sparse_block_size = self.config.sparse_attention['block']
|
| 1131 |
+
else:
|
| 1132 |
+
self.is_sparse = False
|
| 1133 |
+
|
| 1134 |
+
if self.is_sparse and self.config.is_decoder:
|
| 1135 |
+
raise RuntimeError('SparseAttention with BertModel decoder is not currently supported!')
|
| 1136 |
+
|
| 1137 |
+
self.embeddings = BertEmbeddings(config)
|
| 1138 |
+
self.encoder = BertEncoder(config)
|
| 1139 |
+
|
| 1140 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
| 1141 |
+
|
| 1142 |
+
# Initialize weights and apply final processing
|
| 1143 |
+
self.post_init()
|
| 1144 |
+
|
| 1145 |
+
def get_input_embeddings(self):
|
| 1146 |
+
return self.embeddings.word_embeddings
|
| 1147 |
+
|
| 1148 |
+
def set_input_embeddings(self, value):
|
| 1149 |
+
self.embeddings.word_embeddings = value
|
| 1150 |
+
|
| 1151 |
+
def _prune_heads(self, heads_to_prune):
|
| 1152 |
+
"""
|
| 1153 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
| 1154 |
+
class PreTrainedModel
|
| 1155 |
+
"""
|
| 1156 |
+
for layer, heads in heads_to_prune.items():
|
| 1157 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
| 1158 |
+
|
| 1159 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1160 |
+
@add_code_sample_docstrings(
|
| 1161 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 1162 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1163 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
| 1164 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1165 |
+
)
|
| 1166 |
+
def forward(
|
| 1167 |
+
self,
|
| 1168 |
+
input_ids=None,
|
| 1169 |
+
attention_mask=None,
|
| 1170 |
+
token_type_ids=None,
|
| 1171 |
+
position_ids=None,
|
| 1172 |
+
head_mask=None,
|
| 1173 |
+
inputs_embeds=None,
|
| 1174 |
+
encoder_hidden_states=None,
|
| 1175 |
+
encoder_attention_mask=None,
|
| 1176 |
+
past_key_values=None,
|
| 1177 |
+
use_cache=None,
|
| 1178 |
+
output_attentions=None,
|
| 1179 |
+
output_hidden_states=None,
|
| 1180 |
+
return_dict=None,
|
| 1181 |
+
):
|
| 1182 |
+
r"""
|
| 1183 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1184 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
| 1185 |
+
the model is configured as a decoder.
|
| 1186 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1187 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
| 1188 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 1189 |
+
|
| 1190 |
+
- 1 for tokens that are **not masked**,
|
| 1191 |
+
- 0 for tokens that are **masked**.
|
| 1192 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 1193 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
| 1194 |
+
|
| 1195 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
| 1196 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
| 1197 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 1198 |
+
use_cache (`bool`, *optional*):
|
| 1199 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1200 |
+
`past_key_values`).
|
| 1201 |
+
"""
|
| 1202 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1203 |
+
output_hidden_states = (
|
| 1204 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1205 |
+
)
|
| 1206 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1207 |
+
|
| 1208 |
+
if self.config.is_decoder:
|
| 1209 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1210 |
+
else:
|
| 1211 |
+
use_cache = False
|
| 1212 |
+
|
| 1213 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1214 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1215 |
+
elif input_ids is not None:
|
| 1216 |
+
input_shape = input_ids.size()
|
| 1217 |
+
elif inputs_embeds is not None:
|
| 1218 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 1219 |
+
else:
|
| 1220 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1221 |
+
|
| 1222 |
+
batch_size, seq_length = input_shape
|
| 1223 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1224 |
+
|
| 1225 |
+
# if sparse attention is used, input sequence length should be divisible by block size
|
| 1226 |
+
if self.is_sparse and seq_length % self.sparse_block_size != 0:
|
| 1227 |
+
raise RuntimeError(f'BertModel with sparse attention is used, but seq_len = {seq_length} '
|
| 1228 |
+
f'is not divisible by block_size = {self.sparse_block_size}')
|
| 1229 |
+
|
| 1230 |
+
# past_key_values_length
|
| 1231 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
| 1232 |
+
|
| 1233 |
+
if attention_mask is None:
|
| 1234 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
| 1235 |
+
|
| 1236 |
+
if token_type_ids is None:
|
| 1237 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
| 1238 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
| 1239 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
| 1240 |
+
token_type_ids = buffered_token_type_ids_expanded
|
| 1241 |
+
else:
|
| 1242 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
| 1243 |
+
|
| 1244 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 1245 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 1246 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
| 1247 |
+
|
| 1248 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 1249 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 1250 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
| 1251 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
| 1252 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
| 1253 |
+
if encoder_attention_mask is None:
|
| 1254 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
| 1255 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
| 1256 |
+
else:
|
| 1257 |
+
encoder_extended_attention_mask = None
|
| 1258 |
+
|
| 1259 |
+
# Prepare head mask if needed
|
| 1260 |
+
# 1.0 in head_mask indicate we keep the head
|
| 1261 |
+
# attention_probs has shape bsz x n_heads x N x N
|
| 1262 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 1263 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 1264 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 1265 |
+
|
| 1266 |
+
embedding_output = self.embeddings(
|
| 1267 |
+
input_ids=input_ids,
|
| 1268 |
+
position_ids=position_ids,
|
| 1269 |
+
token_type_ids=token_type_ids,
|
| 1270 |
+
inputs_embeds=inputs_embeds,
|
| 1271 |
+
past_key_values_length=past_key_values_length,
|
| 1272 |
+
)
|
| 1273 |
+
encoder_outputs = self.encoder(
|
| 1274 |
+
embedding_output,
|
| 1275 |
+
attention_mask=extended_attention_mask,
|
| 1276 |
+
head_mask=head_mask,
|
| 1277 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1278 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
| 1279 |
+
past_key_values=past_key_values,
|
| 1280 |
+
use_cache=use_cache,
|
| 1281 |
+
output_attentions=output_attentions,
|
| 1282 |
+
output_hidden_states=output_hidden_states,
|
| 1283 |
+
return_dict=return_dict,
|
| 1284 |
+
)
|
| 1285 |
+
sequence_output = encoder_outputs[0]
|
| 1286 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 1287 |
+
|
| 1288 |
+
if not return_dict:
|
| 1289 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 1290 |
+
|
| 1291 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
| 1292 |
+
last_hidden_state=sequence_output,
|
| 1293 |
+
pooler_output=pooled_output,
|
| 1294 |
+
past_key_values=encoder_outputs.past_key_values,
|
| 1295 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1296 |
+
attentions=encoder_outputs.attentions,
|
| 1297 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
| 1298 |
+
)
|
| 1299 |
+
|
| 1300 |
+
|
| 1301 |
+
@add_start_docstrings(
|
| 1302 |
+
"""
|
| 1303 |
+
Bert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
|
| 1304 |
+
sentence prediction (classification)` head.
|
| 1305 |
+
""",
|
| 1306 |
+
BERT_START_DOCSTRING,
|
| 1307 |
+
)
|
| 1308 |
+
class BertForPreTraining(BertPreTrainedModel):
|
| 1309 |
+
def __init__(self, config):
|
| 1310 |
+
super().__init__(config)
|
| 1311 |
+
|
| 1312 |
+
self.bert = BertModel(config)
|
| 1313 |
+
self.cls = BertPreTrainingHeads(config)
|
| 1314 |
+
|
| 1315 |
+
# Initialize weights and apply final processing
|
| 1316 |
+
self.post_init()
|
| 1317 |
+
|
| 1318 |
+
def get_output_embeddings(self):
|
| 1319 |
+
return self.cls.predictions.decoder
|
| 1320 |
+
|
| 1321 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1322 |
+
self.cls.predictions.decoder = new_embeddings
|
| 1323 |
+
|
| 1324 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1325 |
+
@replace_return_docstrings(output_type=BertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
| 1326 |
+
def forward(
|
| 1327 |
+
self,
|
| 1328 |
+
input_ids=None,
|
| 1329 |
+
attention_mask=None,
|
| 1330 |
+
token_type_ids=None,
|
| 1331 |
+
position_ids=None,
|
| 1332 |
+
head_mask=None,
|
| 1333 |
+
inputs_embeds=None,
|
| 1334 |
+
labels=None,
|
| 1335 |
+
next_sentence_label=None,
|
| 1336 |
+
output_attentions=None,
|
| 1337 |
+
output_hidden_states=None,
|
| 1338 |
+
return_dict=None,
|
| 1339 |
+
):
|
| 1340 |
+
r"""
|
| 1341 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1342 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1343 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked),
|
| 1344 |
+
the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1345 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1346 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence
|
| 1347 |
+
pair (see `input_ids` docstring) Indices should be in `[0, 1]`:
|
| 1348 |
+
|
| 1349 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
| 1350 |
+
- 1 indicates sequence B is a random sequence.
|
| 1351 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
| 1352 |
+
Used to hide legacy arguments that have been deprecated.
|
| 1353 |
+
|
| 1354 |
+
Returns:
|
| 1355 |
+
|
| 1356 |
+
Example:
|
| 1357 |
+
|
| 1358 |
+
```python
|
| 1359 |
+
>>> from transformers import BertTokenizer, BertForPreTraining
|
| 1360 |
+
>>> import torch
|
| 1361 |
+
|
| 1362 |
+
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 1363 |
+
>>> model = BertForPreTraining.from_pretrained("bert-base-uncased")
|
| 1364 |
+
|
| 1365 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
| 1366 |
+
>>> outputs = model(**inputs)
|
| 1367 |
+
|
| 1368 |
+
>>> prediction_logits = outputs.prediction_logits
|
| 1369 |
+
>>> seq_relationship_logits = outputs.seq_relationship_logits
|
| 1370 |
+
```
|
| 1371 |
+
"""
|
| 1372 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1373 |
+
|
| 1374 |
+
outputs = self.bert(
|
| 1375 |
+
input_ids,
|
| 1376 |
+
attention_mask=attention_mask,
|
| 1377 |
+
token_type_ids=token_type_ids,
|
| 1378 |
+
position_ids=position_ids,
|
| 1379 |
+
head_mask=head_mask,
|
| 1380 |
+
inputs_embeds=inputs_embeds,
|
| 1381 |
+
output_attentions=output_attentions,
|
| 1382 |
+
output_hidden_states=output_hidden_states,
|
| 1383 |
+
return_dict=return_dict,
|
| 1384 |
+
)
|
| 1385 |
+
|
| 1386 |
+
sequence_output, pooled_output = outputs[:2]
|
| 1387 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
| 1388 |
+
|
| 1389 |
+
total_loss = None
|
| 1390 |
+
masked_lm_loss = None
|
| 1391 |
+
next_sentence_loss = None
|
| 1392 |
+
if labels is not None and next_sentence_label is not None:
|
| 1393 |
+
loss_fct = CrossEntropyLoss()
|
| 1394 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1395 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
| 1396 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
| 1397 |
+
|
| 1398 |
+
if not return_dict:
|
| 1399 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
| 1400 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1401 |
+
|
| 1402 |
+
return BertForPreTrainingOutput(
|
| 1403 |
+
loss=total_loss,
|
| 1404 |
+
mlm_loss=masked_lm_loss,
|
| 1405 |
+
nsp_loss=next_sentence_loss,
|
| 1406 |
+
prediction_logits=prediction_scores,
|
| 1407 |
+
seq_relationship_logits=seq_relationship_score,
|
| 1408 |
+
hidden_states=outputs.hidden_states,
|
| 1409 |
+
attentions=outputs.attentions,
|
| 1410 |
+
)
|
| 1411 |
+
|
| 1412 |
+
|
| 1413 |
+
@add_start_docstrings(
|
| 1414 |
+
"""Bert Model with a `language modeling` head on top for CLM fine-tuning.""", BERT_START_DOCSTRING
|
| 1415 |
+
)
|
| 1416 |
+
class BertLMHeadModel(BertPreTrainedModel):
|
| 1417 |
+
|
| 1418 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1419 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
| 1420 |
+
|
| 1421 |
+
def __init__(self, config):
|
| 1422 |
+
super().__init__(config)
|
| 1423 |
+
|
| 1424 |
+
if not config.is_decoder:
|
| 1425 |
+
logger.warning("If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
| 1426 |
+
|
| 1427 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 1428 |
+
self.cls = BertOnlyMLMHead(config)
|
| 1429 |
+
|
| 1430 |
+
# Initialize weights and apply final processing
|
| 1431 |
+
self.post_init()
|
| 1432 |
+
|
| 1433 |
+
def get_output_embeddings(self):
|
| 1434 |
+
return self.cls.predictions.decoder
|
| 1435 |
+
|
| 1436 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1437 |
+
self.cls.predictions.decoder = new_embeddings
|
| 1438 |
+
|
| 1439 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1440 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
| 1441 |
+
def forward(
|
| 1442 |
+
self,
|
| 1443 |
+
input_ids=None,
|
| 1444 |
+
attention_mask=None,
|
| 1445 |
+
token_type_ids=None,
|
| 1446 |
+
position_ids=None,
|
| 1447 |
+
head_mask=None,
|
| 1448 |
+
inputs_embeds=None,
|
| 1449 |
+
encoder_hidden_states=None,
|
| 1450 |
+
encoder_attention_mask=None,
|
| 1451 |
+
labels=None,
|
| 1452 |
+
past_key_values=None,
|
| 1453 |
+
use_cache=None,
|
| 1454 |
+
output_attentions=None,
|
| 1455 |
+
output_hidden_states=None,
|
| 1456 |
+
return_dict=None,
|
| 1457 |
+
):
|
| 1458 |
+
r"""
|
| 1459 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1460 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
| 1461 |
+
if the model is configured as a decoder.
|
| 1462 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1463 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
|
| 1464 |
+
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
| 1465 |
+
|
| 1466 |
+
- 1 for tokens that are **not masked**,
|
| 1467 |
+
- 0 for tokens that are **masked**.
|
| 1468 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1469 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be
|
| 1470 |
+
in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100`
|
| 1471 |
+
are ignored (masked), the loss is only computed for the tokens with labels n `[0, ...,
|
| 1472 |
+
config.vocab_size]`
|
| 1473 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
| 1474 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up
|
| 1475 |
+
decoding.
|
| 1476 |
+
|
| 1477 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
| 1478 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
| 1479 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
| 1480 |
+
use_cache (`bool`, *optional*):
|
| 1481 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 1482 |
+
(see `past_key_values`).
|
| 1483 |
+
|
| 1484 |
+
Returns:
|
| 1485 |
+
|
| 1486 |
+
Example:
|
| 1487 |
+
|
| 1488 |
+
```python
|
| 1489 |
+
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
|
| 1490 |
+
>>> import torch
|
| 1491 |
+
|
| 1492 |
+
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
|
| 1493 |
+
>>> config = BertConfig.from_pretrained("bert-base-cased")
|
| 1494 |
+
>>> config.is_decoder = True
|
| 1495 |
+
>>> model = BertLMHeadModel.from_pretrained("bert-base-cased", config=config)
|
| 1496 |
+
|
| 1497 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
| 1498 |
+
>>> outputs = model(**inputs)
|
| 1499 |
+
|
| 1500 |
+
>>> prediction_logits = outputs.logits
|
| 1501 |
+
```
|
| 1502 |
+
"""
|
| 1503 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1504 |
+
if labels is not None:
|
| 1505 |
+
use_cache = False
|
| 1506 |
+
|
| 1507 |
+
outputs = self.bert(
|
| 1508 |
+
input_ids,
|
| 1509 |
+
attention_mask=attention_mask,
|
| 1510 |
+
token_type_ids=token_type_ids,
|
| 1511 |
+
position_ids=position_ids,
|
| 1512 |
+
head_mask=head_mask,
|
| 1513 |
+
inputs_embeds=inputs_embeds,
|
| 1514 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1515 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1516 |
+
past_key_values=past_key_values,
|
| 1517 |
+
use_cache=use_cache,
|
| 1518 |
+
output_attentions=output_attentions,
|
| 1519 |
+
output_hidden_states=output_hidden_states,
|
| 1520 |
+
return_dict=return_dict,
|
| 1521 |
+
)
|
| 1522 |
+
|
| 1523 |
+
sequence_output = outputs[0]
|
| 1524 |
+
prediction_scores = self.cls(sequence_output)
|
| 1525 |
+
|
| 1526 |
+
lm_loss = None
|
| 1527 |
+
if labels is not None:
|
| 1528 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
| 1529 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
| 1530 |
+
labels = labels[:, 1:].contiguous()
|
| 1531 |
+
loss_fct = CrossEntropyLoss()
|
| 1532 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1533 |
+
|
| 1534 |
+
if not return_dict:
|
| 1535 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1536 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
| 1537 |
+
|
| 1538 |
+
return CausalLMOutputWithCrossAttentions(
|
| 1539 |
+
loss=lm_loss,
|
| 1540 |
+
logits=prediction_scores,
|
| 1541 |
+
past_key_values=outputs.past_key_values,
|
| 1542 |
+
hidden_states=outputs.hidden_states,
|
| 1543 |
+
attentions=outputs.attentions,
|
| 1544 |
+
cross_attentions=outputs.cross_attentions,
|
| 1545 |
+
)
|
| 1546 |
+
|
| 1547 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
| 1548 |
+
input_shape = input_ids.shape
|
| 1549 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
| 1550 |
+
if attention_mask is None:
|
| 1551 |
+
attention_mask = input_ids.new_ones(input_shape)
|
| 1552 |
+
|
| 1553 |
+
# cut decoder_input_ids if past is used
|
| 1554 |
+
if past is not None:
|
| 1555 |
+
input_ids = input_ids[:, -1:]
|
| 1556 |
+
|
| 1557 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past}
|
| 1558 |
+
|
| 1559 |
+
def _reorder_cache(self, past, beam_idx):
|
| 1560 |
+
reordered_past = ()
|
| 1561 |
+
for layer_past in past:
|
| 1562 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
| 1563 |
+
return reordered_past
|
| 1564 |
+
|
| 1565 |
+
|
| 1566 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
| 1567 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
| 1568 |
+
|
| 1569 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1570 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
| 1571 |
+
|
| 1572 |
+
def __init__(self, config):
|
| 1573 |
+
super().__init__(config)
|
| 1574 |
+
|
| 1575 |
+
if config.is_decoder:
|
| 1576 |
+
logger.warning(
|
| 1577 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
| 1578 |
+
"bi-directional self-attention."
|
| 1579 |
+
)
|
| 1580 |
+
|
| 1581 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 1582 |
+
self.cls = BertOnlyMLMHead(config)
|
| 1583 |
+
|
| 1584 |
+
# Initialize weights and apply final processing
|
| 1585 |
+
self.post_init()
|
| 1586 |
+
|
| 1587 |
+
def get_output_embeddings(self):
|
| 1588 |
+
return self.cls.predictions.decoder
|
| 1589 |
+
|
| 1590 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1591 |
+
self.cls.predictions.decoder = new_embeddings
|
| 1592 |
+
|
| 1593 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1594 |
+
@add_code_sample_docstrings(
|
| 1595 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 1596 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1597 |
+
output_type=MaskedLMOutput,
|
| 1598 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1599 |
+
)
|
| 1600 |
+
def forward(
|
| 1601 |
+
self,
|
| 1602 |
+
input_ids=None,
|
| 1603 |
+
attention_mask=None,
|
| 1604 |
+
token_type_ids=None,
|
| 1605 |
+
position_ids=None,
|
| 1606 |
+
head_mask=None,
|
| 1607 |
+
inputs_embeds=None,
|
| 1608 |
+
encoder_hidden_states=None,
|
| 1609 |
+
encoder_attention_mask=None,
|
| 1610 |
+
labels=None,
|
| 1611 |
+
output_attentions=None,
|
| 1612 |
+
output_hidden_states=None,
|
| 1613 |
+
return_dict=None,
|
| 1614 |
+
):
|
| 1615 |
+
r"""
|
| 1616 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1617 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1618 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1619 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1620 |
+
"""
|
| 1621 |
+
|
| 1622 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1623 |
+
|
| 1624 |
+
outputs = self.bert(
|
| 1625 |
+
input_ids,
|
| 1626 |
+
attention_mask=attention_mask,
|
| 1627 |
+
token_type_ids=token_type_ids,
|
| 1628 |
+
position_ids=position_ids,
|
| 1629 |
+
head_mask=head_mask,
|
| 1630 |
+
inputs_embeds=inputs_embeds,
|
| 1631 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1632 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1633 |
+
output_attentions=output_attentions,
|
| 1634 |
+
output_hidden_states=output_hidden_states,
|
| 1635 |
+
return_dict=return_dict,
|
| 1636 |
+
)
|
| 1637 |
+
|
| 1638 |
+
sequence_output = outputs[0]
|
| 1639 |
+
prediction_scores = self.cls(sequence_output)
|
| 1640 |
+
|
| 1641 |
+
masked_lm_loss = None
|
| 1642 |
+
if labels is not None:
|
| 1643 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
| 1644 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 1645 |
+
|
| 1646 |
+
if not return_dict:
|
| 1647 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1648 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1649 |
+
|
| 1650 |
+
return MaskedLMOutput(
|
| 1651 |
+
loss=masked_lm_loss,
|
| 1652 |
+
logits=prediction_scores,
|
| 1653 |
+
hidden_states=outputs.hidden_states,
|
| 1654 |
+
attentions=outputs.attentions,
|
| 1655 |
+
)
|
| 1656 |
+
|
| 1657 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
| 1658 |
+
input_shape = input_ids.shape
|
| 1659 |
+
effective_batch_size = input_shape[0]
|
| 1660 |
+
|
| 1661 |
+
# add a dummy token
|
| 1662 |
+
if self.config.pad_token_id is None:
|
| 1663 |
+
raise ValueError("The PAD token should be defined for generation")
|
| 1664 |
+
|
| 1665 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
| 1666 |
+
dummy_token = torch.full(
|
| 1667 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
| 1668 |
+
)
|
| 1669 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
| 1670 |
+
|
| 1671 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
| 1672 |
+
|
| 1673 |
+
|
| 1674 |
+
@add_start_docstrings(
|
| 1675 |
+
"""Bert Model with a `next sentence prediction (classification)` head on top.""",
|
| 1676 |
+
BERT_START_DOCSTRING,
|
| 1677 |
+
)
|
| 1678 |
+
class BertForNextSentencePrediction(BertPreTrainedModel):
|
| 1679 |
+
def __init__(self, config):
|
| 1680 |
+
super().__init__(config)
|
| 1681 |
+
|
| 1682 |
+
self.bert = BertModel(config)
|
| 1683 |
+
self.cls = BertOnlyNSPHead(config)
|
| 1684 |
+
|
| 1685 |
+
# Initialize weights and apply final processing
|
| 1686 |
+
self.post_init()
|
| 1687 |
+
|
| 1688 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1689 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
| 1690 |
+
def forward(
|
| 1691 |
+
self,
|
| 1692 |
+
input_ids=None,
|
| 1693 |
+
attention_mask=None,
|
| 1694 |
+
token_type_ids=None,
|
| 1695 |
+
position_ids=None,
|
| 1696 |
+
head_mask=None,
|
| 1697 |
+
inputs_embeds=None,
|
| 1698 |
+
labels=None,
|
| 1699 |
+
output_attentions=None,
|
| 1700 |
+
output_hidden_states=None,
|
| 1701 |
+
return_dict=None,
|
| 1702 |
+
**kwargs,
|
| 1703 |
+
):
|
| 1704 |
+
r"""
|
| 1705 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1706 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
| 1707 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
| 1708 |
+
|
| 1709 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
| 1710 |
+
- 1 indicates sequence B is a random sequence.
|
| 1711 |
+
|
| 1712 |
+
Returns:
|
| 1713 |
+
|
| 1714 |
+
Example:
|
| 1715 |
+
|
| 1716 |
+
```python
|
| 1717 |
+
>>> from transformers import BertTokenizer, BertForNextSentencePrediction
|
| 1718 |
+
>>> import torch
|
| 1719 |
+
|
| 1720 |
+
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 1721 |
+
>>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased")
|
| 1722 |
+
|
| 1723 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
| 1724 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
|
| 1725 |
+
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
|
| 1726 |
+
|
| 1727 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
|
| 1728 |
+
>>> logits = outputs.logits
|
| 1729 |
+
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
|
| 1730 |
+
```
|
| 1731 |
+
"""
|
| 1732 |
+
|
| 1733 |
+
if "next_sentence_label" in kwargs:
|
| 1734 |
+
warnings.warn(
|
| 1735 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.",
|
| 1736 |
+
FutureWarning,
|
| 1737 |
+
)
|
| 1738 |
+
labels = kwargs.pop("next_sentence_label")
|
| 1739 |
+
|
| 1740 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1741 |
+
|
| 1742 |
+
outputs = self.bert(
|
| 1743 |
+
input_ids,
|
| 1744 |
+
attention_mask=attention_mask,
|
| 1745 |
+
token_type_ids=token_type_ids,
|
| 1746 |
+
position_ids=position_ids,
|
| 1747 |
+
head_mask=head_mask,
|
| 1748 |
+
inputs_embeds=inputs_embeds,
|
| 1749 |
+
output_attentions=output_attentions,
|
| 1750 |
+
output_hidden_states=output_hidden_states,
|
| 1751 |
+
return_dict=return_dict,
|
| 1752 |
+
)
|
| 1753 |
+
|
| 1754 |
+
pooled_output = outputs[1]
|
| 1755 |
+
|
| 1756 |
+
seq_relationship_scores = self.cls(pooled_output)
|
| 1757 |
+
|
| 1758 |
+
next_sentence_loss = None
|
| 1759 |
+
if labels is not None:
|
| 1760 |
+
loss_fct = CrossEntropyLoss()
|
| 1761 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
| 1762 |
+
|
| 1763 |
+
if not return_dict:
|
| 1764 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
| 1765 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
| 1766 |
+
|
| 1767 |
+
return NextSentencePredictorOutput(
|
| 1768 |
+
loss=next_sentence_loss,
|
| 1769 |
+
logits=seq_relationship_scores,
|
| 1770 |
+
hidden_states=outputs.hidden_states,
|
| 1771 |
+
attentions=outputs.attentions,
|
| 1772 |
+
)
|
| 1773 |
+
|
| 1774 |
+
|
| 1775 |
+
@add_start_docstrings(
|
| 1776 |
+
"""
|
| 1777 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
| 1778 |
+
output) e.g. for GLUE tasks.
|
| 1779 |
+
""",
|
| 1780 |
+
BERT_START_DOCSTRING,
|
| 1781 |
+
)
|
| 1782 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
| 1783 |
+
def __init__(self, config):
|
| 1784 |
+
super().__init__(config)
|
| 1785 |
+
self.num_labels = config.num_labels
|
| 1786 |
+
self.config = config
|
| 1787 |
+
|
| 1788 |
+
self.bert = BertModel(config)
|
| 1789 |
+
classifier_dropout = (
|
| 1790 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1791 |
+
)
|
| 1792 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1793 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1794 |
+
|
| 1795 |
+
# Initialize weights and apply final processing
|
| 1796 |
+
self.post_init()
|
| 1797 |
+
|
| 1798 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 1799 |
+
@add_code_sample_docstrings(
|
| 1800 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 1801 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1802 |
+
output_type=SequenceClassifierOutput,
|
| 1803 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1804 |
+
)
|
| 1805 |
+
def forward(
|
| 1806 |
+
self,
|
| 1807 |
+
input_ids=None,
|
| 1808 |
+
attention_mask=None,
|
| 1809 |
+
token_type_ids=None,
|
| 1810 |
+
position_ids=None,
|
| 1811 |
+
head_mask=None,
|
| 1812 |
+
inputs_embeds=None,
|
| 1813 |
+
labels=None,
|
| 1814 |
+
pos_weight=None,
|
| 1815 |
+
output_attentions=None,
|
| 1816 |
+
output_hidden_states=None,
|
| 1817 |
+
return_dict=None,
|
| 1818 |
+
):
|
| 1819 |
+
r"""
|
| 1820 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1821 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1822 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1823 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1824 |
+
"""
|
| 1825 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1826 |
+
|
| 1827 |
+
outputs = self.bert(
|
| 1828 |
+
input_ids,
|
| 1829 |
+
attention_mask=attention_mask,
|
| 1830 |
+
token_type_ids=token_type_ids,
|
| 1831 |
+
position_ids=position_ids,
|
| 1832 |
+
head_mask=head_mask,
|
| 1833 |
+
inputs_embeds=inputs_embeds,
|
| 1834 |
+
output_attentions=output_attentions,
|
| 1835 |
+
output_hidden_states=output_hidden_states,
|
| 1836 |
+
return_dict=return_dict,
|
| 1837 |
+
)
|
| 1838 |
+
|
| 1839 |
+
pooled_output = outputs[1]
|
| 1840 |
+
|
| 1841 |
+
pooled_output = self.dropout(pooled_output)
|
| 1842 |
+
logits = self.classifier(pooled_output)
|
| 1843 |
+
|
| 1844 |
+
loss = None
|
| 1845 |
+
if labels is not None:
|
| 1846 |
+
if self.config.problem_type is None:
|
| 1847 |
+
if self.num_labels == 1:
|
| 1848 |
+
self.config.problem_type = "regression"
|
| 1849 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1850 |
+
self.config.problem_type = "single_label_classification"
|
| 1851 |
+
else:
|
| 1852 |
+
self.config.problem_type = "multi_label_classification"
|
| 1853 |
+
|
| 1854 |
+
if self.config.problem_type == "regression":
|
| 1855 |
+
loss_fct = MSELoss()
|
| 1856 |
+
if self.num_labels == 1:
|
| 1857 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1858 |
+
else:
|
| 1859 |
+
loss = loss_fct(logits, labels)
|
| 1860 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1861 |
+
loss_fct = CrossEntropyLoss()
|
| 1862 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1863 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1864 |
+
loss_fct = BCEWithLogitsLoss(pos_weight=pos_weight)
|
| 1865 |
+
loss = loss_fct(logits, labels)
|
| 1866 |
+
if not return_dict:
|
| 1867 |
+
output = (logits,) + outputs[2:]
|
| 1868 |
+
return ((loss,) + output) if loss is not None else output
|
| 1869 |
+
|
| 1870 |
+
return SequenceClassifierOutput(
|
| 1871 |
+
loss=loss,
|
| 1872 |
+
logits=logits,
|
| 1873 |
+
hidden_states=outputs.hidden_states,
|
| 1874 |
+
attentions=outputs.attentions,
|
| 1875 |
+
)
|
| 1876 |
+
|
| 1877 |
+
|
| 1878 |
+
@add_start_docstrings(
|
| 1879 |
+
"""
|
| 1880 |
+
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
| 1881 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
| 1882 |
+
""",
|
| 1883 |
+
BERT_START_DOCSTRING,
|
| 1884 |
+
)
|
| 1885 |
+
class BertForMultipleChoice(BertPreTrainedModel):
|
| 1886 |
+
def __init__(self, config):
|
| 1887 |
+
super().__init__(config)
|
| 1888 |
+
|
| 1889 |
+
self.bert = BertModel(config)
|
| 1890 |
+
classifier_dropout = (
|
| 1891 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1892 |
+
)
|
| 1893 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1894 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 1895 |
+
|
| 1896 |
+
# Initialize weights and apply final processing
|
| 1897 |
+
self.post_init()
|
| 1898 |
+
|
| 1899 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
| 1900 |
+
@add_code_sample_docstrings(
|
| 1901 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 1902 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1903 |
+
output_type=MultipleChoiceModelOutput,
|
| 1904 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1905 |
+
)
|
| 1906 |
+
def forward(
|
| 1907 |
+
self,
|
| 1908 |
+
input_ids=None,
|
| 1909 |
+
attention_mask=None,
|
| 1910 |
+
token_type_ids=None,
|
| 1911 |
+
position_ids=None,
|
| 1912 |
+
head_mask=None,
|
| 1913 |
+
inputs_embeds=None,
|
| 1914 |
+
labels=None,
|
| 1915 |
+
output_attentions=None,
|
| 1916 |
+
output_hidden_states=None,
|
| 1917 |
+
return_dict=None,
|
| 1918 |
+
):
|
| 1919 |
+
r"""
|
| 1920 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1921 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 1922 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 1923 |
+
`input_ids` above)
|
| 1924 |
+
"""
|
| 1925 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1926 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 1927 |
+
|
| 1928 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 1929 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1930 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 1931 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 1932 |
+
inputs_embeds = (
|
| 1933 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 1934 |
+
if inputs_embeds is not None
|
| 1935 |
+
else None
|
| 1936 |
+
)
|
| 1937 |
+
|
| 1938 |
+
outputs = self.bert(
|
| 1939 |
+
input_ids,
|
| 1940 |
+
attention_mask=attention_mask,
|
| 1941 |
+
token_type_ids=token_type_ids,
|
| 1942 |
+
position_ids=position_ids,
|
| 1943 |
+
head_mask=head_mask,
|
| 1944 |
+
inputs_embeds=inputs_embeds,
|
| 1945 |
+
output_attentions=output_attentions,
|
| 1946 |
+
output_hidden_states=output_hidden_states,
|
| 1947 |
+
return_dict=return_dict,
|
| 1948 |
+
)
|
| 1949 |
+
|
| 1950 |
+
pooled_output = outputs[1]
|
| 1951 |
+
|
| 1952 |
+
pooled_output = self.dropout(pooled_output)
|
| 1953 |
+
logits = self.classifier(pooled_output)
|
| 1954 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 1955 |
+
|
| 1956 |
+
loss = None
|
| 1957 |
+
if labels is not None:
|
| 1958 |
+
loss_fct = CrossEntropyLoss()
|
| 1959 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 1960 |
+
|
| 1961 |
+
if not return_dict:
|
| 1962 |
+
output = (reshaped_logits,) + outputs[2:]
|
| 1963 |
+
return ((loss,) + output) if loss is not None else output
|
| 1964 |
+
|
| 1965 |
+
return MultipleChoiceModelOutput(
|
| 1966 |
+
loss=loss,
|
| 1967 |
+
logits=reshaped_logits,
|
| 1968 |
+
hidden_states=outputs.hidden_states,
|
| 1969 |
+
attentions=outputs.attentions,
|
| 1970 |
+
)
|
| 1971 |
+
|
| 1972 |
+
|
| 1973 |
+
@add_start_docstrings(
|
| 1974 |
+
"""
|
| 1975 |
+
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1976 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1977 |
+
""",
|
| 1978 |
+
BERT_START_DOCSTRING,
|
| 1979 |
+
)
|
| 1980 |
+
class BertForTokenClassification(BertPreTrainedModel):
|
| 1981 |
+
|
| 1982 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 1983 |
+
|
| 1984 |
+
def __init__(self, config):
|
| 1985 |
+
super().__init__(config)
|
| 1986 |
+
self.num_labels = config.num_labels
|
| 1987 |
+
self.config = config
|
| 1988 |
+
if getattr(self.config, 'problem_type', None) is None:
|
| 1989 |
+
self.config.problem_type = 'single_label_classification'
|
| 1990 |
+
|
| 1991 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 1992 |
+
classifier_dropout = (
|
| 1993 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1994 |
+
)
|
| 1995 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1996 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1997 |
+
|
| 1998 |
+
# Initialize weights and apply final processing
|
| 1999 |
+
self.post_init()
|
| 2000 |
+
|
| 2001 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 2002 |
+
@add_code_sample_docstrings(
|
| 2003 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 2004 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 2005 |
+
output_type=TokenClassifierOutput,
|
| 2006 |
+
config_class=_CONFIG_FOR_DOC,
|
| 2007 |
+
)
|
| 2008 |
+
def forward(
|
| 2009 |
+
self,
|
| 2010 |
+
input_ids=None,
|
| 2011 |
+
attention_mask=None,
|
| 2012 |
+
token_type_ids=None,
|
| 2013 |
+
position_ids=None,
|
| 2014 |
+
head_mask=None,
|
| 2015 |
+
inputs_embeds=None,
|
| 2016 |
+
labels=None,
|
| 2017 |
+
labels_mask=None,
|
| 2018 |
+
pos_weight=None,
|
| 2019 |
+
output_attentions=None,
|
| 2020 |
+
output_hidden_states=None,
|
| 2021 |
+
return_dict=None,
|
| 2022 |
+
):
|
| 2023 |
+
r"""
|
| 2024 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 2025 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 2026 |
+
"""
|
| 2027 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 2028 |
+
|
| 2029 |
+
outputs = self.bert(
|
| 2030 |
+
input_ids,
|
| 2031 |
+
attention_mask=attention_mask,
|
| 2032 |
+
token_type_ids=token_type_ids,
|
| 2033 |
+
position_ids=position_ids,
|
| 2034 |
+
head_mask=head_mask,
|
| 2035 |
+
inputs_embeds=inputs_embeds,
|
| 2036 |
+
output_attentions=output_attentions,
|
| 2037 |
+
output_hidden_states=output_hidden_states,
|
| 2038 |
+
return_dict=return_dict,
|
| 2039 |
+
)
|
| 2040 |
+
|
| 2041 |
+
sequence_output = outputs[0]
|
| 2042 |
+
|
| 2043 |
+
sequence_output = self.dropout(sequence_output)
|
| 2044 |
+
logits = self.classifier(sequence_output)
|
| 2045 |
+
|
| 2046 |
+
loss = None
|
| 2047 |
+
if labels is not None:
|
| 2048 |
+
if self.config.problem_type == 'single_label_classification':
|
| 2049 |
+
loss_fct = CrossEntropyLoss()
|
| 2050 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 2051 |
+
elif self.config.problem_type == 'multi_label_classification':
|
| 2052 |
+
if labels_mask is None:
|
| 2053 |
+
loss_fct = BCEWithLogitsLoss(pos_weight=pos_weight)
|
| 2054 |
+
loss = loss_fct(logits, labels)
|
| 2055 |
+
else:
|
| 2056 |
+
loss_fct = BCEWithLogitsLoss(reduction='none', pos_weight=pos_weight)
|
| 2057 |
+
loss = loss_fct(logits, labels)
|
| 2058 |
+
loss = loss * labels_mask.unsqueeze(-1)
|
| 2059 |
+
loss = loss.sum() / labels_mask.sum() if labels_mask.sum() != 0.0 else torch.tensor(0.0, device=logits.device)
|
| 2060 |
+
|
| 2061 |
+
if not return_dict:
|
| 2062 |
+
output = (logits,) + outputs[2:]
|
| 2063 |
+
return ((loss,) + output) if loss is not None else output
|
| 2064 |
+
|
| 2065 |
+
return TokenClassifierOutput(
|
| 2066 |
+
loss=loss,
|
| 2067 |
+
logits=logits,
|
| 2068 |
+
hidden_states=outputs.hidden_states,
|
| 2069 |
+
attentions=outputs.attentions,
|
| 2070 |
+
)
|
| 2071 |
+
|
| 2072 |
+
|
| 2073 |
+
@add_start_docstrings(
|
| 2074 |
+
"""
|
| 2075 |
+
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
| 2076 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 2077 |
+
""",
|
| 2078 |
+
BERT_START_DOCSTRING,
|
| 2079 |
+
)
|
| 2080 |
+
class BertForQuestionAnswering(BertPreTrainedModel):
|
| 2081 |
+
|
| 2082 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
| 2083 |
+
|
| 2084 |
+
def __init__(self, config):
|
| 2085 |
+
super().__init__(config)
|
| 2086 |
+
self.num_labels = config.num_labels
|
| 2087 |
+
|
| 2088 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
| 2089 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
| 2090 |
+
|
| 2091 |
+
# Initialize weights and apply final processing
|
| 2092 |
+
self.post_init()
|
| 2093 |
+
|
| 2094 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 2095 |
+
@add_code_sample_docstrings(
|
| 2096 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 2097 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 2098 |
+
output_type=QuestionAnsweringModelOutput,
|
| 2099 |
+
config_class=_CONFIG_FOR_DOC,
|
| 2100 |
+
)
|
| 2101 |
+
def forward(
|
| 2102 |
+
self,
|
| 2103 |
+
input_ids=None,
|
| 2104 |
+
attention_mask=None,
|
| 2105 |
+
token_type_ids=None,
|
| 2106 |
+
position_ids=None,
|
| 2107 |
+
head_mask=None,
|
| 2108 |
+
inputs_embeds=None,
|
| 2109 |
+
start_positions=None,
|
| 2110 |
+
end_positions=None,
|
| 2111 |
+
output_attentions=None,
|
| 2112 |
+
output_hidden_states=None,
|
| 2113 |
+
return_dict=None,
|
| 2114 |
+
):
|
| 2115 |
+
r"""
|
| 2116 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 2117 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 2118 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 2119 |
+
are not taken into account for computing the loss.
|
| 2120 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 2121 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 2122 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 2123 |
+
are not taken into account for computing the loss.
|
| 2124 |
+
"""
|
| 2125 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 2126 |
+
|
| 2127 |
+
outputs = self.bert(
|
| 2128 |
+
input_ids,
|
| 2129 |
+
attention_mask=attention_mask,
|
| 2130 |
+
token_type_ids=token_type_ids,
|
| 2131 |
+
position_ids=position_ids,
|
| 2132 |
+
head_mask=head_mask,
|
| 2133 |
+
inputs_embeds=inputs_embeds,
|
| 2134 |
+
output_attentions=output_attentions,
|
| 2135 |
+
output_hidden_states=output_hidden_states,
|
| 2136 |
+
return_dict=return_dict,
|
| 2137 |
+
)
|
| 2138 |
+
|
| 2139 |
+
sequence_output = outputs[0]
|
| 2140 |
+
|
| 2141 |
+
logits = self.qa_outputs(sequence_output)
|
| 2142 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 2143 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 2144 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 2145 |
+
|
| 2146 |
+
total_loss = None
|
| 2147 |
+
if start_positions is not None and end_positions is not None:
|
| 2148 |
+
# If we are on multi-GPU, split add a dimension
|
| 2149 |
+
if len(start_positions.size()) > 1:
|
| 2150 |
+
start_positions = start_positions.squeeze(-1)
|
| 2151 |
+
if len(end_positions.size()) > 1:
|
| 2152 |
+
end_positions = end_positions.squeeze(-1)
|
| 2153 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 2154 |
+
ignored_index = start_logits.size(1)
|
| 2155 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 2156 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 2157 |
+
|
| 2158 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 2159 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 2160 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 2161 |
+
total_loss = (start_loss + end_loss) / 2
|
| 2162 |
+
|
| 2163 |
+
if not return_dict:
|
| 2164 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 2165 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 2166 |
+
|
| 2167 |
+
return QuestionAnsweringModelOutput(
|
| 2168 |
+
loss=total_loss,
|
| 2169 |
+
start_logits=start_logits,
|
| 2170 |
+
end_logits=end_logits,
|
| 2171 |
+
hidden_states=outputs.hidden_states,
|
| 2172 |
+
attentions=outputs.attentions,
|
| 2173 |
+
)
|
| 2174 |
+
|
| 2175 |
+
|
| 2176 |
+
# todo: move to separate file with other position embeddings?
|
| 2177 |
+
# https://github.com/EleutherAI/gpt-neox/blob/8229d921d329266323706c01dd6778fa71649ac7/megatron/model/positional_embeddings.py#L24
|
| 2178 |
+
# https://blog.eleuther.ai/rotary-embeddings/
|
| 2179 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 2180 |
+
def __init__(self, dim, base=10000):
|
| 2181 |
+
super().__init__()
|
| 2182 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 2183 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 2184 |
+
self.seq_len_cached = None
|
| 2185 |
+
self.cos_cached = None
|
| 2186 |
+
self.sin_cached = None
|
| 2187 |
+
|
| 2188 |
+
def forward(self, x, seq_dim=1, seq_len=None):
|
| 2189 |
+
if seq_len is None:
|
| 2190 |
+
seq_len = x.shape[seq_dim]
|
| 2191 |
+
if seq_len != self.seq_len_cached:
|
| 2192 |
+
self.seq_len_cached = seq_len
|
| 2193 |
+
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
|
| 2194 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 2195 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 2196 |
+
self.cos_cached = emb.cos()[None, None, :, :]
|
| 2197 |
+
self.sin_cached = emb.sin()[None, None, :, :]
|
| 2198 |
+
return self.cos_cached, self.sin_cached
|
| 2199 |
+
|
| 2200 |
+
|
| 2201 |
+
def rotate_half(x):
|
| 2202 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
| 2203 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
| 2204 |
+
|
| 2205 |
+
|
| 2206 |
+
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
|
| 2207 |
+
cos, sin = cos[:, :, offset: q.shape[2] + offset, :], sin[:, :, offset: q.shape[2] + offset, :]
|
| 2208 |
+
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0e3f5002c941bcd2ca097e0e486b476d83b9b5a8f752dc01cd4cb183b2209c6
|
| 3 |
+
size 541130889
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"tokenizer_class": "PreTrainedTokenizerFast"}
|