--- tags: - biogpt - boolean-query - biomedical - systematic-review - pubmed license: unknown model-index: - name: BioGPT-BQF-TMK-Small results: - task: type: text-generation name: Text Generation dataset: name: CLEF TAR type: biomedical metrics: - name: Precision @100 type: precision value: 0.1340 - name: Recall @1000 type: recall value: 0.2125 --- # **BioGPT-BQF-TMK-Small** A fine-tuned **BioGPT** model for **Boolean query formalization in biomedical systematic reviews**, incorporating **Titles, MeSH Terms, and Keywords** to improve **PubMed search query generation**. ## **Model Overview** - **Base Model**: [BioGPT](https://huggingface.co/microsoft/BioGPT) - **Fine-tuned on**: Semi-synthetic generated data - **Task**: Boolean Query Generation for PubMed searches - **Inputs**: Research topic title, MeSH terms, and Keywords - **Outputs**: Optimized PubMed Boolean search query ## **Usage** ```python from transformers import BioGptForCausalLM, BioGptTokenizer model_name = "AI4BSLR/BioGPT-BQF-TMK-Small" model = BioGptForCausalLM.from_pretrained(model_name) tokenizer = BioGptTokenizer.from_pretrained(model_name) input_text = "Title: Heterogeneity in Lung Cancer, MeSH: Biomarkers, Tumor, Genetic Heterogeneity, Keywords: Biomarkers, Query: " inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True))